Skip to main content

Advertisement

Log in

Unidimensional continuous-variable quantum key distribution with noisy source

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the security of unidimensional continuous-variable quantum key distribution with source noise at the sender. The source noise is ascribed to the legitimate sides rather than the eavesdropper and modeled as a thermal noise coupled with the signal mode through a beam splitter. The physicality bound and expressions of secret key rate are derived against collective entangling cloner attacks. Simulation results show that with source noise, the security bound of unidimensional protocol can be tightened. Moreover, proper source noise enlarges the security region to a wider range of parameters, thus eliminates potential eavesdropping threats and enhances the feasibility of unidimensional protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dus̆ek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    Article  ADS  Google Scholar 

  2. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)

    Article  ADS  Google Scholar 

  3. Grosshans, F.: Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94, 020504 (2005)

    Article  ADS  Google Scholar 

  4. Navascués, M., Acín, A.: Security bounds for continuous variables quantum key distribution. Phys. Rev. Lett. 94, 020505 (2005)

    Article  ADS  Google Scholar 

  5. Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101, 200504 (2008)

    Article  ADS  Google Scholar 

  6. Renner, R., Cirac, J.I.: de finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504 (2009)

    Article  ADS  Google Scholar 

  7. Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110, 030502 (2013)

    Article  ADS  Google Scholar 

  8. Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114, 070501 (2015)

    Article  ADS  Google Scholar 

  9. Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118, 200501 (2017)

    Article  ADS  Google Scholar 

  10. Grosshans, F., Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003)

    Article  ADS  Google Scholar 

  11. Lodewyck, J., Bloch, M., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., Grangier, P.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76, 042305 (2007)

    Article  ADS  Google Scholar 

  12. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378–381 (2013)

    Article  ADS  Google Scholar 

  13. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    Article  ADS  Google Scholar 

  14. Zhang, Y.C., Li, Z., Chen, Z., et al.: Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol. 4, 035006 (2019)

    Article  ADS  Google Scholar 

  15. Usenko, V.C., Grosshans, F.: Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92, 062337 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gehring, T., Jacobsen, C.S., Andersen, U.L.: Single-quadrature continuous-variable quantum key distribution. Quantum Inf. Comput. 16, 1081–1095 (2016)

    MathSciNet  Google Scholar 

  17. Wang, X., Liu, W., Pu, W., Li, Y.: Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution. Phys. Rev. A 95, 062330 (2017)

    Article  ADS  Google Scholar 

  18. Filip, R.: Continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 77, 022310 (2008)

    Article  ADS  Google Scholar 

  19. Usenko, V., Filip, R.: Feasibility of continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 81, 022318 (2010)

    Article  ADS  Google Scholar 

  20. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  21. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Transm. 9, 177–183 (1973)

    Google Scholar 

  22. Milicevic, M., Feng, C., Zhang, L.M., Gulak, P.G.: Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography. NPJ Quantum Inf. 4, 21 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is supported in part by the Natural Science Foundation of China (No. 61865002), in part by the Major Project of Guizhou Province (No. [2016]3022), in part by the Science & Technology Cooperation Project of Guizhou Province (No. [2014]7002, No. [2016]7431) and in part by the Scientific Research Foundation for Talent Introduced in Guizhou University (No. [2015]45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Li, L., Li, M. et al. Unidimensional continuous-variable quantum key distribution with noisy source. Quantum Inf Process 19, 3 (2020). https://doi.org/10.1007/s11128-019-2495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2495-z

Keywords

Navigation