Skip to main content
Log in

Quantum walk with quadratic position-dependent phase defects

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A comprehensive study of the property of one-dimensional quantum walks, via position distribution of the walker, is adopted herein by considering position-dependent quadratic phase defect. We have explored the origins of this property by introducing a designated position quadratic phase defect conditional shift operator for a discrete-time quantum walk. Numerical simulations conclude that the revival of the walker depends on the phase modulation parameter and the number of steps. In addition, we have found that the localization effect appears after the threshold point where the amplitude of the walker reaches its maximum value, at a constant interval corresponding to the revival period. Furthermore, numerical results show that for rational parabolic coefficients, \(2\pi \frac{q}{p}\), of the phase defect profile, revivals occur with period 2p for odd p and period p for even p. Furthermore, the period of revival as a function of p is the same as in the case of a linear (instead of quadratic) phase gradient, which was previously investigated in many studies [for instance, see Wójcik et al. (Phys Rev Lett 93:180601, 2004) and Cedzich et al. (Phys Rev Lett 111:160601, 2013)]. The results of this approach therefore shed light on the analysis of discrete quantum processes and the potential relevant for physical implementations of quantum computing with various mesoscopic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1 (1943)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    ADS  Google Scholar 

  3. Guillotin-Plantard, N., Schott, R.: Dynamic Random Walks: Theory and Application. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  4. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1, 507–518 (2003)

    MATH  Google Scholar 

  5. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    ADS  Google Scholar 

  6. Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551–574 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Aharonov, D., Ambainis. A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of STOC’01, pp. 50–59

  8. Bachelier, L.: Theory of speculation. Ann. Sci. Ecole Norm. Super. 17, 21 (1900)

    MATH  Google Scholar 

  9. Childs, A.M.: In: Proceedings of ACM Symposium on Theory of Computing (STOC 2003) pp. 59–68 (2003)

  10. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 307–327 (2003)

    ADS  Google Scholar 

  11. Berry, S.D., Wang, J.B.: Quantum-walk-based search and centrality. Phys. Rev. A 82, 042333 (2010)

    ADS  Google Scholar 

  12. Franco, C., McGettrick, D., Busch, M.: Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin. Phys. Rev. Lett. 106, 080502 (2011)

    Google Scholar 

  13. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    ADS  MathSciNet  Google Scholar 

  14. Childs, A.M., Gosset, D., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339, 791–794 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)

    ADS  MathSciNet  Google Scholar 

  16. Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)

    Google Scholar 

  17. Hoyer, S., Sarovar, M., Whaley, K.B.: Limits of quantum speedup in photosynthetic light harvesting. New J. Phys. 12, 065041 (2010)

    ADS  Google Scholar 

  18. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    ADS  Google Scholar 

  19. Mohseni, P.M., Rebentrost, P., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum walks in energy transfer of photosynthetic complexes. J. Chem. Phys. 129, 174106 (2008)

    ADS  Google Scholar 

  20. Ren, J., Chen, T., Zhang, X.: Long-lived quantum speedup based on plasmonic hot spot systems. New J. Phys. 21, 053034 (2019)

    ADS  Google Scholar 

  21. Wójcik, A.: Trapping a particle of a quantum walk on the line. Phys. Rev. A 85, 012329 (2012)

    ADS  Google Scholar 

  22. Konno, N.: Localization of an inhomogeneous discrete-time quantum walk on the line. Quantum Inf. Process. 9, 405–418 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Shikano, Y., Katsura, H.: Localization and fractality in inhomogeneous quantum walks with self-duality. Phys. Rev. E 82, 031122 (2010)

    ADS  MathSciNet  Google Scholar 

  24. Zhang, R., Xue, P., Twamley, J.: One-dimensional quantum walks with single-point phase defects. Phys. Rev. A 89, 042317 (2014)

    ADS  Google Scholar 

  25. Schreiber, A.: Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106, 180403 (2011)

    ADS  Google Scholar 

  26. Crespi, A.: Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322–328 (2013)

    ADS  Google Scholar 

  27. Kitagawa, T., Broome, M.A., Fedrizzi, A., Rudner, M.S., Berg, E., Kassal, I., Aspuru-Guzik, A., Demler, E., White, A.G.: Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 3, 882 (2012)

    ADS  Google Scholar 

  28. Wójcik, A., Łuczak, T., Kurzyński, P., Grudka, A., Bednarska, M.: Quasiperiodic dynamics of a quantum walk on the line. Phys. Rev. Lett. 93, 180601 (2004)

    ADS  MATH  Google Scholar 

  29. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509(7501), 475–478 (2014)

    ADS  Google Scholar 

  30. Zahringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)

    ADS  Google Scholar 

  31. Xue, P., Qin, H., Tang, B.: Trapping photons on the line: controllable dynamics of a quantum walk. Sci. Rep. 4, 4825 (2014)

    ADS  Google Scholar 

  32. Schmitz, H., Matjeschk, R., Schneider, Ch., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009)

    ADS  Google Scholar 

  33. Cote, R., Russell, A., Eyler, E.E., Gould, P.L.: Quantum random walk with Rydberg atoms in an optical lattice. New J. Phys. 8, 156 (2006)

    ADS  Google Scholar 

  34. Karski, M., Forster, L., Choi, J., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325, 174 (2009)

    ADS  Google Scholar 

  35. Do, B., Stohler, M.L., Balasubramanian, S., Elliott, D.S., Eash, C., Fischbach, E., Fischbach, M.A., Mills, A., Zwickl, B.: Experimental realization of a quantum quincunx by use of linear optical elements. J. Opt. Soc. Am. B 22, 499 (2005)

    ADS  MathSciNet  Google Scholar 

  36. Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)

    ADS  Google Scholar 

  37. Crespi, A., Osellame, R., Ramponi, R., Giovannetti, V., Fazio, R., Sansoni, L., Nicola, F.D., Sciarrino, F., Mataloni, P.: Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322 (2013)

    ADS  Google Scholar 

  38. Owens, J.O., Broome, M.A., Biggerstaff, D.N., Goggin, M.E., Fedrizzi, A., Linjordet, T., Ams, M., Marshall, G.D., Twamley, J., Withford, M.J., White, A.G.: Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011)

    ADS  Google Scholar 

  39. Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle bosonic–fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)

    ADS  Google Scholar 

  40. Tang, H., et al.: Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv. 4(5), eaat3174 (2018)

    ADS  Google Scholar 

  41. Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. vol. 104, p. 050502 (2010)

  42. Peruzzo, A., Lobino, M., Matthews, J.C.F., Matsuda, N., Politi, A., Poulios, K., Zhou, X., Lahini, Y., Ismail, N., Wőrhoff, K., Bromberg, Y., Silberberg, Y., Thompson, M.G., OBrien, J.L.: Quantum walks of correlated photons. Science 329, 1500 (2010)

    ADS  Google Scholar 

  43. Schreiber, A., Gábris, A., Rohde, P.P., Laiho, K., Štefaňák, M., Potoček, V., Hamilton, C., Jex, I., Silberhorn, Ch.: A 2D quantum walk simulation of two-particle dynamics. Science 336, 55–58 (2012)

    ADS  Google Scholar 

  44. Travaglione, B.C., Milburn, G.J.: Implementing the quantum random walk. Phys. Rev. A 65, 032310 (2002)

    ADS  Google Scholar 

  45. Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5, 83 (2003)

    ADS  Google Scholar 

  46. Cedzich, C., Rybar, T., Werner, A.H., Alberti, A., Genske, M., Werner, R.F.: Propagation of quantum walks in electric fields. Phys. Rev. Lett. 111, 160601 (2003)

    Google Scholar 

  47. Ramasesh, V.V., Flurin, E., Rudner, M.S., Siddiqi, I., Yao, N.Y.: Direct Probe of Topological Invariants Using Bloch Oscillating Quantum Walks, arXiv:1609.09504 (2016)

Download references

Acknowledgements

Dr. Najeh Rekik thanks the Deanship of Scientific Research, University of Ha’il, Kingdom of Saudi Arabia, for the financial support under Grant No. SP14005. The authors would also like to thank Dr. Ryan Zaari (Department of Chemistry, University of Alberta) for the careful reading of the manuscript and the fruitful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najeh Rekik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, U., Alshammari, A.S. & Rekik, N. Quantum walk with quadratic position-dependent phase defects. Quantum Inf Process 19, 6 (2020). https://doi.org/10.1007/s11128-019-2496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2496-y

Keywords

Navigation