Abstract
We investigate through both theory and experiment quantum decoherence processes. By considering a qubit under the effect of Markovian channels, we analytically obtain expressions for the \(l_1\)-norm of coherence and for the corresponding maximal coherence measure in terms of the initial state and decoherence parameters. In particular, we examine under which conditions such quantum coherence quantifiers exhibit the eternal freezing phenomenon, and we find that this property is more common in maximal quantum coherence compared to quantum coherence. We implement an all-optical setup with an intense laser to perform the experimental simulation of the quantum channels, where the qubit was encoded in polarization degree of freedom and the environment was encoded in the propagation path.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)
Jha, P.K., Mrejen, M., Kim, J., Wu, C., Wang, Y., Rostovtsev, Y.V., Zhang, X.: Coherence-driven topological transition in quantum metamaterials. Phys. Rev. Lett. 116, 165502 (2016)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)
Demkowicz-Dobrzanski, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113, 250801 (2014)
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)
Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)
Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)
Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)
Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)
Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)
Baumgratz, T., Cramer, M., Plenio, M.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)
Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)
Smyth, C., Scholes, G.D.: Method of developing analytical multipartite delocalization measures for mixed-like states. Phys. Rev. A 90, 032312 (2014)
Streltsov, A., Kampermann, H., Wölk, S., Gessner, M., Bruß, D.: Maximal coherence and the resource theory of purity. New J. Phys. 20, 053058 (2018)
Yu, C., Yang, S., Guo, B.: Total quantum coherence and its applications. Quantum Inf. Process. 15, 3773 (2016)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)
Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)
Silva, I.A., Souza, A.M., Bromley, T.R., Cianciaruso, M., Marx, R., Sarthour, R.S., Oliveira, I.S., Lo Franco, R., Glaser, S.J., de Azevedo, E.R., Soares-Pinto, D.O., Adesso, G.: Time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 117, 160402 (2016)
Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303 (2016)
Yang, L.W., Han, W., Xia, Y.J.: Freezing quantum coherence with weak measurement. Chin. Opt. Lett. 15, 052701 (2017)
Yang, L.W., Man, Z.X., Zhang, Y.J., Han, F., Du, S.J., Xia, Y.J.: Preparation of freezing quantum state for quantum coherence. Quantum Inf. Process. 17, 127 (2018)
Ming-Liang, H., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)
Passos, M.H.M., Obando, P.C., Balthazar, W.F., Paula, F.M., Huguenin, J.A.O., Sarandy, M.S.: Non-Markovianity through quantum coherence in an all-optical setup. Opt. Lett. 44, 2478–2481 (2019)
Maioli, A.C., Passos, M.H.M., Balthazar, W.F., Souza, C.E.R., Huguenin, J.A.O., Schmidt, A.G.M.: Quantization and experimental realization of the Colonel Blotto game. Quantum Inf. Process. 18, 1–20 (2018)
Song, X., Sun, Y., Li, P., Qin, H., Zhang, X.: Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light. Sci. Rep. 5, 14113 (2015)
Dudley, A., Nock, M., Konrad, T., Filippus, R.S., Forbes, A.: Amplitude damping of Laguerre–Gaussian modes. Opt. Express 18, 22789–22795 (2010)
Walborn, S.P., de Oliveira, A.N., Monken, C.H.: Implementing the Deutsch algorithm with polarization and transverse spatial modes. J. Opt. B 7, 288 (2005)
Hor-Meyll, M., Tasca, D.S., Walborn, S.P., Ribeiro, P.H.S., Santos, M.M., Duzzioni, E.I.: Deterministic quantum computation with one photonic qubit. Phys. Rev. A 92, 012337 (2015)
Qing, L., Bing, H.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310 (2009)
Babazadeh, A., Erhard, M., Wang, F., Malik, M., Nouroozi, R., Krenn, M., Zeilinger, A.: High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119, 180510 (2017)
D’Ambrosio, V., Nagali, E., Walborn, S.P., Aolita, L., Slussarenko, S., Marrucci, L., Sciarrino, F.: Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3, 961 (2012)
Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)
Khoury, A.Z., Milman, P.: Quantum teleportation in the spin–orbit variables of photon pairs. Phys. Rev. A 83, 060301 (2011)
Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78(2), 022322 (2008)
Souza, C.E.R., Huguenin, J.A.O., Milman, P., Khoury, A.Z.: Topological phase for spin–orbit transformations on a laser beam. Phys. Rev. Lett. 99, 160401 (2007)
Souza, C.E.R., Huguenin, J.A.O., Khoury, A.Z.: Topological phase structure of vector vortex beams. J. Opt. Soc. Am. A 31, 1007 (2014)
Borges, C.V.S., Hor-Meyll, M., Huguenin, J.A.O., Khoury, A.Z.: Bell-like inequality for the spin–orbit separability of a laser beam. Phys. Rev. A 82, 033833 (2010)
Qian, X.-F., Little, B., Howell, J.C., Eberly, J.H.: Shifting the quantum-classical boundary: theory and experiment for statistically classical optical fields. Optica 2, 611 (2015)
Balthazar, W.F., Souza, C.E.R., Caetano, D.P., Galvão, E.F., Huguenin, J.A.O., Khoury, A.Z.: Tripartite nonseparability in classical optics. Opt. Lett. 41, 5797 (2016)
Souza, C.E.R., Borges, C.V.S., Khoury, A.Z., Huguenin, J.A.O., Aolita, L., Walborn, S.P.: Quantum key distribution without a shared reference frame. Phys. Rev. A 77, 032345 (2008)
da Silva, B.P., Leal, M.A., Souza, C.E.R., Galvão, E.F., Khoury, A.Z.: Spin–orbit laser mode transfer via a classical analogue of quantum teleportation. J. Phys. B 49, 055501 (2016)
Passos, M.H.M., Balthazar, W.F., Khoury, A.Z., Hor-Meyll, M., Davidovich, L., Huguenin, J.A.O.: Experimental investigation of environment-induced entanglement using an all-optical setup. Phys. Rev. A 97, 022321 (2018)
Souza, C.E.R., Khoury, A.Z.: A Michelson controlled-not gate with a single-lens astigmatic mode converter. Opt. Express 1, 9207 (2010)
Balthazar, W.F., Huguenin, J.A.O.: Conditional operation using three degrees of freedom of a laser beam for application in quantum information. J. Opt. Soc. Am. B 33, 1649 (2016)
Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)
Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)
Raimond, J.M., Haroche, S.: Monitoring the decoherence of mesoscopic quantum superpositions in a cavity. Prog. Math. Phys. 48, 33 (2006)
Spreeuw, R.J.: a classical analogy of entanglement. Found. Phys. 28, 361 (1998)
Xiao-Feng, Qian, Eberly, J.H.: Entanglement and classical polarization states. Opt. Lett. 36, 4110–4112 (2011)
Pereira, L.J., Khoury, A.Z., Dechoum, K.: Quantum and classical separability of spin–orbit laser modes. Phys. Rev. A. 90, 053842 (2014)
Altepeter, J.B., Jeffrey, E.R., Kwiat, P.G.: Photonic state tomography. Adv. At. Mol. Opt. Phys. 52, 105 (2005)
Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)
Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498 (2000)
Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Decoherence-free subspaces for multiple-qubit errors. II. Universal, fault-tolerant quantum computation. Phys. Rev. A 63, 022307 (2001)
Shabani, A., Lidar, D.A.: Theory of initialization-free decoherence-free subspaces and subsystems. Phys. Rev. A 72, 042303 (2005)
Lidar, D.A.: Review of decoherence free subspaces, noiseless subsystems, and dynamical decoupling. Adv. Chem. Phys. 154, 295 (2014)
Blume-Kohout, R., Khoon Ng, H., Poulin, D., Viola, L.: Characterizing the structure of preserved information in quantum processes. Phys. Rev. Lett. 100, 030501 (2008)
Blume-Kohout, R., Khoon Ng, H., Poulin, D., Viola, L.: Information-preserving structures: a general framework for quantum zero-error information. Phys. Rev. A 82, 062306 (2010)
Alber, G., Beth, Th, Charnes, Ch., Delgado, A., Grassl, M., Mussinger, M.: Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes. Phys. Rev. Lett. 86, 4402 (2001)
Alber, G., Delgado, A., Mussinger, M.: Quantum error correction and quan-tum computation with detected-jump correcting quantum codes. Fortschr. Phys. 49, 901 (2001)
Khodjasteh, K., Lidar, D.A.: Universal fault-tolerant quantum computationin the presence of spontaneous emission and collective dephasing. Phys. Rev. Lett. 89, 197904 (2002)
Knill, E., Laflamme, R., Viola, L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525 (2000)
Ollerenshaw, J.E., Lidar, D.A., Kay, L.E.: Magnetic resonance realization of decoherence-free quantum computation. Phys. Rev. Lett. 91, 217904 (2003)
Zanardi, P., Rossi, F.: Quantum information in semiconductors: noiseless encoding in a quantum-dot array. Phys. Rev. Lett. 81, 4752 (1998)
Zanardi, P., Rossi, F.: Subdecoherent information encoding in a quantum-dot array. Phys. Rev. B 59, 8170 (1999)
Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709 (2002)
Lidar, D.A., Whaley, K.B.: Decoherence-free subspaces and subsystems. In: Benatti, F., Floreanini, R. (eds.) Irreversible Quantum Dynamics. Springer, Berlin (2003)
Farhi, E., Gutmann, S.: Analog analogue of a digital quantum computation. Phys. Rev. A 57, 2403 (1998)
Anand, N., Pati, A.K.: Coherence and entanglement monogamy in the discrete analogue of analog Grover search. arXiv: 1611.04542 [quant-ph] (2016)
Kagalwala, K.H., Di Giuseppe, G., Abouraddy, A.F., Saleh, B.E.A.: Bell’s measure in classical optical coherence. Nat. Photonics 7, 72 (2013)
Acknowledgements
We would like to thank Professor M.S. Sarandy by fruitful discussions. This work is supported by the Brazilian agencies CNPq, CAPES, FAPERJ and the Brazilian National Institute for Science and Technology of Quantum Information (INCT-IQ).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Obando, P.C., Passos, M.H.M., Paula, F.M. et al. Simulating Markovian quantum decoherence processes through an all-optical setup. Quantum Inf Process 19, 7 (2020). https://doi.org/10.1007/s11128-019-2499-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2499-8