Skip to main content

Advertisement

Log in

Predicting optimal parameters with random forest for quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

For practical quantum key distribution (QKD) in finite-data case, full optimized parameters can greatly improve its key rate. To gain such optimal parameters, traditional search algorithms are performed quite frequently despite the high time and hardware overhead, which may be a severe challenge for real-time QKD systems and large-scale QKD networks. In this paper, instead of searching optimal parameters, we employ random forest to directly predict those parameters. Firstly, we illustrate the feasibility of this method with 3-intensity measurement-device-independent QKD (MDI-QKD). Later, we rebuild a versatile model applicable to MDI and BB84 protocol simultaneously. Both numerical simulations demonstrate our method enjoys a low time and hardware overhead compared with traditional search method and achieves over 99% of the optimal secure key rate as well, which is very promising in future QKD applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computer, Systems and Signal Processing , pp. 175–179 (1984)

  2. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  4. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351 (2001)

    Article  MathSciNet  Google Scholar 

  5. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  6. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  7. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  8. Ma, X.F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  9. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  Google Scholar 

  10. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  11. Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44 (2002)

    Article  ADS  Google Scholar 

  12. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  13. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  14. Qi, B., Fung, C.H.F., Lo, H.K., et al.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–82 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Makarov, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. J. Mod. Opt. 52, 691–705 (2005)

    Article  ADS  Google Scholar 

  16. Lim, C.C.W., Curty, M., Walenta, N., et al.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)

    Article  ADS  Google Scholar 

  17. Curty, M., Xu, F.H., Cui, W., Lim, C.C.W., et al.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

    Article  ADS  Google Scholar 

  18. Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)

    Article  ADS  Google Scholar 

  19. Xu, F.H., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)

    Article  ADS  Google Scholar 

  20. Hu, X.L., Zhou, Y.H., Yu, Z.W., Wang, X.B.: Practical measurement-device-independent quantum key distribution without vacuum sources. Phys. Rev. A 95, 032331 (2017)

    Article  ADS  Google Scholar 

  21. Lu, F.Y., Yin, Z.Q., Cui, C.H., et al.: Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network. J. Opt. Soc. Am. B 36, B92–B98 (2019)

    Article  Google Scholar 

  22. Wang, W.Y., Lo, H.K.: Machine Learning for Optimal Parameter Prediction in Quantum Key Distribution. arXiv:1807.03466 (2018)

  23. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  24. Liaw, A., Wiener, M.: Classification and regression by randomForest. R. News 2, 18–22 (2012)

    Google Scholar 

  25. Meinshausen, N.: Quantile regression forests. J. Mach. Learn. Res. 7, 983–999 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Davies, A., Ghahramani, Z.: The Random Forest Kernel and Creating Other Kernels for Big Data From Random Partitions. arXiv:1402.4293 (2014)

  27. Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)

    Article  ADS  Google Scholar 

  28. Fröhlich, B., et al.: A quantum access network. Nature (London) 501, 69 (2013)

    Article  ADS  Google Scholar 

  29. Tang, Y.L., et al.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6(1), 011024 (2016)

    Google Scholar 

Download references

Acknowledgements

We appreciate enlightened discussion and kind assistance from C. H. Zhang and X. Y. Zhou. We also gratefully acknowledge the financial support from National Key Research and Development Program of China (2018YFA0306400, 2017YFA0304100); National Natural Science Foundation of China (NSFC) (11774180, 61705110, 11847215, 61475197, 61590932); China Postdoctoral Science Foundation (2019T120446, 2018M642281); Natural Science Foundation of Jiangsu Province (BK20170902); Jiangsu Planned Projects for Postdoctoral Research Funds (2018K185C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Mei Zhang or Qin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: derivation about the function f

Appendix: derivation about the function f

Assume the training set is \({{\varvec{D}}}=\{(\textit{X}_i, \textit{Y}_i)\}_{i=1}^n\), where \(\textit{X}_i\) denotes input features with responses \(\textit{Y}_i\). In the input space of training set, the binary decision tree is generated by recursively dividing each region into two subregions and determining the output value of each one.

  1. (1)

    Select the optimal segmentation variable j and the segmentation point s to solve:

    $$\begin{aligned} \mathop {\min }\limits _{j,s} \left[ {\mathop {\min }\limits _{{c_1}} \sum _{{x_i} \in {R_1}\left( {j,s} \right) } {{{\left( {{y_i} - {c_1}} \right) }^2}} + \mathop {\min }\limits _{{c_2}} \sum _{{x_i} \in {R_2}\left( {j,s} \right) } {{{\left( {{y_i} - {c_2}} \right) }^2}} } \right] . \end{aligned}$$
    (4)

    By traversing the variable j, the segmentation point s is scanned for the fixed segmentation variable j, and (js) is finally obtained that makes Eq. (4) reach the minimum.

  2. (2)

    Devide the region with selected (js) and determine the corresponding output value:

    $$\begin{aligned}&{R_1}\left( {j,s} \right) = \left\{ {x|{x^{\left( j \right) }} \le s} \right\} , {R_2}\left( {j,s} \right) = \left\{ {x|{x^{\left( j \right) }} > s} \right\} ,\nonumber \\&{{\hat{c}}_m} = \frac{1}{{{N_m}}}\sum _{{x_i} \in {R_m} \left( {j,s} \right) } {y_i} , x \in {R_m},m = 1,2. \end{aligned}$$
    (5)
  3. (3)

    Continue to call steps (1,2) on the two subregions until the stop condition is met.

  4. (4)

    Divide the input space into M subregions (\(R_1, R_2,\ldots , R_M\)) to generate a decision tree:

    $$\begin{aligned} f\left( x \right) = \sum _{m = 1}^M {{{\hat{c}}_m} I\left( {x \in {R_m}} \right) }. \end{aligned}$$
    (6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, HJ., Liu, JY., Zhang, CM. et al. Predicting optimal parameters with random forest for quantum key distribution. Quantum Inf Process 19, 60 (2020). https://doi.org/10.1007/s11128-019-2548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2548-3

Keywords