Abstract
For practical quantum key distribution (QKD) in finite-data case, full optimized parameters can greatly improve its key rate. To gain such optimal parameters, traditional search algorithms are performed quite frequently despite the high time and hardware overhead, which may be a severe challenge for real-time QKD systems and large-scale QKD networks. In this paper, instead of searching optimal parameters, we employ random forest to directly predict those parameters. Firstly, we illustrate the feasibility of this method with 3-intensity measurement-device-independent QKD (MDI-QKD). Later, we rebuild a versatile model applicable to MDI and BB84 protocol simultaneously. Both numerical simulations demonstrate our method enjoys a low time and hardware overhead compared with traditional search method and achieves over 99% of the optimal secure key rate as well, which is very promising in future QKD applications.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computer, Systems and Signal Processing , pp. 175–179 (1984)
Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)
Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351 (2001)
Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)
Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)
Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)
Ma, X.F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)
Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)
Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)
Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44 (2002)
Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
Qi, B., Fung, C.H.F., Lo, H.K., et al.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–82 (2007)
Makarov, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. J. Mod. Opt. 52, 691–705 (2005)
Lim, C.C.W., Curty, M., Walenta, N., et al.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)
Curty, M., Xu, F.H., Cui, W., Lim, C.C.W., et al.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)
Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)
Xu, F.H., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)
Hu, X.L., Zhou, Y.H., Yu, Z.W., Wang, X.B.: Practical measurement-device-independent quantum key distribution without vacuum sources. Phys. Rev. A 95, 032331 (2017)
Lu, F.Y., Yin, Z.Q., Cui, C.H., et al.: Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network. J. Opt. Soc. Am. B 36, B92–B98 (2019)
Wang, W.Y., Lo, H.K.: Machine Learning for Optimal Parameter Prediction in Quantum Key Distribution. arXiv:1807.03466 (2018)
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Liaw, A., Wiener, M.: Classification and regression by randomForest. R. News 2, 18–22 (2012)
Meinshausen, N.: Quantile regression forests. J. Mach. Learn. Res. 7, 983–999 (2006)
Davies, A., Ghahramani, Z.: The Random Forest Kernel and Creating Other Kernels for Big Data From Random Partitions. arXiv:1402.4293 (2014)
Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)
Fröhlich, B., et al.: A quantum access network. Nature (London) 501, 69 (2013)
Tang, Y.L., et al.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6(1), 011024 (2016)
Acknowledgements
We appreciate enlightened discussion and kind assistance from C. H. Zhang and X. Y. Zhou. We also gratefully acknowledge the financial support from National Key Research and Development Program of China (2018YFA0306400, 2017YFA0304100); National Natural Science Foundation of China (NSFC) (11774180, 61705110, 11847215, 61475197, 61590932); China Postdoctoral Science Foundation (2019T120446, 2018M642281); Natural Science Foundation of Jiangsu Province (BK20170902); Jiangsu Planned Projects for Postdoctoral Research Funds (2018K185C).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix: derivation about the function f
Appendix: derivation about the function f
Assume the training set is \({{\varvec{D}}}=\{(\textit{X}_i, \textit{Y}_i)\}_{i=1}^n\), where \(\textit{X}_i\) denotes input features with responses \(\textit{Y}_i\). In the input space of training set, the binary decision tree is generated by recursively dividing each region into two subregions and determining the output value of each one.
- (1)
Select the optimal segmentation variable j and the segmentation point s to solve:
$$\begin{aligned} \mathop {\min }\limits _{j,s} \left[ {\mathop {\min }\limits _{{c_1}} \sum _{{x_i} \in {R_1}\left( {j,s} \right) } {{{\left( {{y_i} - {c_1}} \right) }^2}} + \mathop {\min }\limits _{{c_2}} \sum _{{x_i} \in {R_2}\left( {j,s} \right) } {{{\left( {{y_i} - {c_2}} \right) }^2}} } \right] . \end{aligned}$$(4)By traversing the variable j, the segmentation point s is scanned for the fixed segmentation variable j, and (j, s) is finally obtained that makes Eq. (4) reach the minimum.
- (2)
Devide the region with selected (j, s) and determine the corresponding output value:
$$\begin{aligned}&{R_1}\left( {j,s} \right) = \left\{ {x|{x^{\left( j \right) }} \le s} \right\} , {R_2}\left( {j,s} \right) = \left\{ {x|{x^{\left( j \right) }} > s} \right\} ,\nonumber \\&{{\hat{c}}_m} = \frac{1}{{{N_m}}}\sum _{{x_i} \in {R_m} \left( {j,s} \right) } {y_i} , x \in {R_m},m = 1,2. \end{aligned}$$(5) - (3)
Continue to call steps (1,2) on the two subregions until the stop condition is met.
- (4)
Divide the input space into M subregions (\(R_1, R_2,\ldots , R_M\)) to generate a decision tree:
$$\begin{aligned} f\left( x \right) = \sum _{m = 1}^M {{{\hat{c}}_m} I\left( {x \in {R_m}} \right) }. \end{aligned}$$(6)
Rights and permissions
About this article
Cite this article
Ding, HJ., Liu, JY., Zhang, CM. et al. Predicting optimal parameters with random forest for quantum key distribution. Quantum Inf Process 19, 60 (2020). https://doi.org/10.1007/s11128-019-2548-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2548-3