Skip to main content
Log in

Quantum network coding utilizing quantum discord resource fully

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Secure and faithful transmission of quantum information between remote locations is still a basic topic in quantum communication. Beyond remote state preparation and entanglement distribution by separable states, quantum discord, as a more general quantum communication resource, controls the realization of the whole communication process. In this paper, we propose a feasible quantum network coding scheme utilizing quantum discord resource fully. With the help of entanglement distribution by separable states, the scheme initially achieves quantum entanglement distribution of two crossing source–target pairs in a butterfly network with fewer entanglement resources. Furthermore, by means of remote state preparation, known quantum states can be transmitted across a network via previously shared quantum channels with the assistance of some classical information. Compared with the representative schemes, the proposed scheme is more efficient in the use of quantum resources. The deduced relationship indicates that quantum discord is the necessary resource for quantum network coding based on remote state preparation, particularly, less entanglement corresponds to higher fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahlswede, R., Cai, N., Li, S.Y.R., et al.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)

    Article  MathSciNet  Google Scholar 

  2. Hayashi, M., Iwamam, K.: Quantum network coding. Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 4393, pp. 610–621 (2007)

  3. Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76(4), 538 (2007)

    Article  MathSciNet  Google Scholar 

  4. Wang, F., Luo, M.X., Xu, G.: Photonic quantum network transmission assisted by the weak cross-Kerr nonlinearity. Sci. China Phys. Mech. Astron. 61(6), 060312 (2018)

    Article  Google Scholar 

  5. Nguyen, H.V., Babar, Z., Alanis, D.: Towards the quantum Internet: Generalised quantum network coding for large-scale quantum communication networks. IEEE Access 5, 17288–17308 (2017)

    Article  Google Scholar 

  6. Li, D.D., Gao, F., Qin, S.J.: Perfect quantum multiple-unicast network coding protocol. Quantum Inf. Process. 17(1), 13 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Satoh, T., Gall, F.L., Imai, H.: Quantum network coding for quantum repeaters. Phys. Rev. A 86(3), 1–8 (2012)

    Article  Google Scholar 

  8. Shang, T., Li, K., Liu, J.W.: Continuous-variable quantum network coding for coherent states. Quantum Inf. Process. 20(4), 291 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Bennett, H.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    Article  ADS  Google Scholar 

  12. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)

    Article  ADS  Google Scholar 

  13. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)

    Article  ADS  Google Scholar 

  14. Chen, Z.B., Zhang, Y.D.: Possible realization of josephson charge qubits in two coupled bose-einstein condensates. Phys. Rev. A 65(2), 130–132 (2002)

    Google Scholar 

  15. Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68(6), 062319 (2003)

    Article  ADS  Google Scholar 

  16. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a non-maximally entangled state. Physics 69(2), 577–580 (2003)

    Google Scholar 

  17. Jiang, M., Zhou S., Ding M.X.: Quantum network coding based on remote state preparation of arbitrary two-qubit states. In: Proceedings of the 36th Chinese Control Conference (F). Dalian, China, pp. 9757–9760 (2017)

  18. Dakic, B., Lipp, Y.O., Ma, X., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8(9), 666–670 (2012)

    Article  Google Scholar 

  19. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72(4), 042316 (2005)

    Article  ADS  Google Scholar 

  20. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  Google Scholar 

  21. Liu, Z.W., Hu, X., Lloyd, S.: Resource destroying maps. Phys. Rev. Lett. 118(6), 060502 (2017)

    Article  ADS  Google Scholar 

  22. Streltsov, A.: Quantum correlations beyond entanglement, pp. 11–16. Springer, Cham (2015)

    MATH  Google Scholar 

  23. Berta, M., Brandao, F.G., Majenz, C.: Deconstruction and conditional erasure of quantum correlations. Phys. Rev. A 98(4), 042320 (2018)

    Article  ADS  Google Scholar 

  24. Cubitt, T.S., Verstraete, F., Dur, W., Cirac, J.I.: Separable states can be used to distribute entanglement. Phys. Rev. Lett. 91(3), 037902 (2003)

    Article  ADS  Google Scholar 

  25. Shang, T., Liu, R., Fang C.R., Liu, J.W.: Quantum network coding based on entanglement distribution. In: Proceedings of the 5th International Conference of Artificial Intelligence and Security (ICAIS). New York, USA, pp. 13–24 (2019)

  26. Kay, A.: Using separable bell-diagonal states to distribute entanglement. Phys. Rev. Lett. 109(8), 080503 (2012)

    Article  ADS  Google Scholar 

  27. Fedrizzi, A., Zuppardo, M., Gillett, G.G.: Experimental distribution of entanglement with separable carriers. Phys. Rev. Lett. 111(23), 230504 (2013)

    Article  ADS  Google Scholar 

  28. Chuan, T.K., Maillard, J., Modi, K., et al.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109(7), 070501 (2012)

    Article  ADS  Google Scholar 

  29. Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A At. Mol. Opt. Phys. 54(5), 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  30. Duan, L.M., Guo, G.C.: A probabilistic cloning machine for replicating two non-orthogonal states. Phys. Lett. A 243(s5–6), 261–264 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  31. Bennett, C.H., Hayden, P., Leung, D.W.: Remote preparation of quantum states. IEEE Trans. Inf. Theory 51(1), 56–74 (2005)

    Article  MathSciNet  Google Scholar 

  32. Chaves, R., De Melo, F.: Noisy one-way quantum computations: the role of correlations. Phys. Rev. A 84(2), 2079–2082 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 61571024 and 61971021), the National Key Research and Development Program of China (No. 2016YFC1000307) and Aeronautical Science Foundation of China (No. 2018ZC51016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Shang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Shang, T. & Liu, Jw. Quantum network coding utilizing quantum discord resource fully. Quantum Inf Process 19, 58 (2020). https://doi.org/10.1007/s11128-019-2558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2558-1

Keywords

Navigation