Skip to main content
Log in

Discriminating two non-orthogonal states against decoherence by feedback control

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Guo et al. (Phys Rev A 91(2):022321, 2015) introduced the feed-forward control to realize a better effect of discrimination of two non-orthogonal states against noise. However, the better effect of discrimination is achieved in a probabilistic way. To solve the problem, we introduce the feedback control to discriminate two non-orthogonal states against noise. It is shown that it can improve the effect of discrimination for any pair of non-orthogonal states and any strength of amplitude damping noise largely in a deterministic way. In particular, our optimum probability of discrimination can be higher than that of discriminating two initial non-orthogonal pure states for not only equal a priori probabilities but also unequal a priori probabilities. We also examine the approach in the presence of different noise sources and find it works well for all typical types of noise sources ranging from a single type of noise to the combination of different types of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, p. 175. IEEE, New York (1984)

  2. Jiang, D., Wang, J., Liang, X., et al.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04337-8

    Article  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Helstrom, C.W.: Quantum Detection and Estimation Theory, Mathematics in Science and Engineering, vol. 123. Academic, New York (1976)

    MATH  Google Scholar 

  5. Holevo, A.S.: Statistical decision theory for quantum systems. J. Multivar. Anal. 3, 337–394 (1973)

    Article  MathSciNet  Google Scholar 

  6. Yuen, H.P., Kenndey, R.S., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory 21, 125–134 (1975)

    Article  MathSciNet  Google Scholar 

  7. Bergou, J.A.: Discrimination of quantum states. J. Mod. Opt. 57, 160–180 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Barnett, S.M.: Minimum-error discrimination between multiply symmetric states. Phys. Rev. A 64, 030303 (2001)

    Article  ADS  Google Scholar 

  9. Andersson, E., Barnett, S.M., Gilson, C.R., Hunter, K.: Minimum-error discrimination between three mirror-symmetric states. Phys. Rev. A 65, 052308 (2002)

    Article  ADS  Google Scholar 

  10. Chou, C.L., Hsu, L.Y.: Minimum-error discrimination between symmetric mixed quantum states. Phys. Rev. A 68, 042305 (2003)

    Article  ADS  Google Scholar 

  11. Herzog, U., Bergou, J.A.: Minimum-error discrimination between subsets of linearly dependent quantum states. Phys. Rev. A 65, 050305 (2002)

    Article  ADS  Google Scholar 

  12. Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257–259 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303–306 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  15. Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197, 83–87 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  16. Peres, A., Terno, D.R.: Optimal distinction between two non-orthogonal quantum states. J. Phys. A: Math. Gen. 31, 7105–7111 (1998)

    Article  ADS  Google Scholar 

  17. Zhang, C.W., Li, C.F., Guo, G.C.: General strategies for discrimination of quantum states. Phys. Lett. A 261, 25–29 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  18. Chefles, A., Barnett, S.M.: Optimum unambiguous discrimination between linearly independent symmetric states. Phys. Lett. A 250, 223–229 (1998)

    Article  ADS  Google Scholar 

  19. Sun, Y., Bergou, J.A., Hillery, M.: Optimum unambiguous discrimination between subsets of nonorthogonal quantum states. Phys. Rev. A 66, 032315 (2002)

    Article  ADS  Google Scholar 

  20. Eldar, Y.C.: A semidefinite programming approach to optimal unambiguous discrimination of quantum states. IEEE Trans. Inf. Theory 49, 446–456 (2003)

    Article  MathSciNet  Google Scholar 

  21. Qiu, D.: Optimum unambiguous discrimination between subsets of quantum states. Phys. Lett. A 309, 189–197 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. Rudolph, T., Spekkens, R.W., Turner, P.S.: Unambiguous discrimination of mixed states. Phys. Rev. A 68, 010301 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Feng, Y., Duan, R., Ying, M.: Unambiguous discrimination between mixed quantum states. Phys. Rev. A 70, 012308 (2004)

    Article  ADS  Google Scholar 

  24. Raynal, P., Lütkenhaus, N., van Enk, S.J.: Reduction theorems for optimal unambiguous state discrimination of density matrices. Phys. Rev. A 68, 022308 (2003)

    Article  ADS  Google Scholar 

  25. Herzog, U., Bergou, J.A.: Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 71, 050301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Raynal, P., Lütkenhaus, N.: Optimal unambiguous state discrimination of two density matrices: Lower bound and class of exact solutions. Phys. Rev. A 72, 022342 (2005)

    Article  ADS  Google Scholar 

  27. Bergou, J.A., Feldman, E., Hillery, M.: Optimal unambiguous discrimination of two subspaces as a case in mixed-state discrimination. Phys. Rev. A 73, 032107 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  28. Brańczyk, A.M., Mendonça, P.E.M.F., Gilchrist, A., Doherty, A.C., Bartlett, S.D.: Quantum control of a single qubit. Phys. Rev. A 75, 012329 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)

    Article  ADS  Google Scholar 

  30. Yang, Y., Zhang, X.Y., Ma, J., Yi, X.X.: Extended techniques for feedback control of a single qubit. Phys. Rev. A 87, 012333 (2013)

    Article  ADS  Google Scholar 

  31. Jacobs, K.: Feedback control for communication with non-orthogonal states. Quantum Inf. Comput. 7, 127–138 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Wang, C.Q., Xu, B.M., Zou, J., He, Z., Yan, Y., Li, J.G., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A 89, 032303 (2014)

    Article  ADS  Google Scholar 

  33. Harraz, S., Cong, S., Li, K.: Two-qubit state recovery from amplitude damping based on weak measurement. eprint arXiv:1808.03094 (2018)

  34. Cao, Y., Tian, G., Zhang, Z., Yang, Y., Wen, Q., Gao, F.: Composite control for protecting two nonorthogonal qubit states against decoherence. Phys. Rev. A 95, 032313 (2017)

    Article  ADS  Google Scholar 

  35. Carvalho, A.R.R., Reid, A.J.S., Hope, J.J.: Controlling entanglement by direct quantum feedback. Phys. Rev. A 78, 012334 (2008)

    Article  ADS  Google Scholar 

  36. Guo, L.S., Xu, B.M., Zou, J., Wang, C., Li, H., Li, J., Shao, B.: Discriminating two nonorthogonal states against a noise channel by feed-forward control. Phys. Rev. A 91, 022321 (2015)

    Article  ADS  Google Scholar 

  37. Gillett, G.G., Dalton, R.B., Lanyon, B.P., Almeida, M.P., Barbieri, M., Pryde, G.J., O’Brien, J.L., Resch, K.J., Bartlett, S.D., White, A.G.: Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett. 104, 080503 (2010)

    Article  ADS  Google Scholar 

  38. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61572053); Beijing Natural Science Foundation (Grant No. 4182006); Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YG., Chen, N., Yang, YL. et al. Discriminating two non-orthogonal states against decoherence by feedback control. Quantum Inf Process 19, 69 (2020). https://doi.org/10.1007/s11128-019-2568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2568-z

Keywords

Navigation