Abstract
Guo et al. (Phys Rev A 91(2):022321, 2015) introduced the feed-forward control to realize a better effect of discrimination of two non-orthogonal states against noise. However, the better effect of discrimination is achieved in a probabilistic way. To solve the problem, we introduce the feedback control to discriminate two non-orthogonal states against noise. It is shown that it can improve the effect of discrimination for any pair of non-orthogonal states and any strength of amplitude damping noise largely in a deterministic way. In particular, our optimum probability of discrimination can be higher than that of discriminating two initial non-orthogonal pure states for not only equal a priori probabilities but also unequal a priori probabilities. We also examine the approach in the presence of different noise sources and find it works well for all typical types of noise sources ranging from a single type of noise to the combination of different types of noise.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig14_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig15_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig16_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig17_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig18_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig19_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig20_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig21_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig22_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig23_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig24_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig25_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig26_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig27_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig28_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig29_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig30_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig31_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig32_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig33_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig34_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig35_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig36_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig37_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig38_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig39_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig40_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig41_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig42_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig43_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig44_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-019-2568-z/MediaObjects/11128_2019_2568_Fig45_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, p. 175. IEEE, New York (1984)
Jiang, D., Wang, J., Liang, X., et al.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04337-8
Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)
Helstrom, C.W.: Quantum Detection and Estimation Theory, Mathematics in Science and Engineering, vol. 123. Academic, New York (1976)
Holevo, A.S.: Statistical decision theory for quantum systems. J. Multivar. Anal. 3, 337–394 (1973)
Yuen, H.P., Kenndey, R.S., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory 21, 125–134 (1975)
Bergou, J.A.: Discrimination of quantum states. J. Mod. Opt. 57, 160–180 (2010)
Barnett, S.M.: Minimum-error discrimination between multiply symmetric states. Phys. Rev. A 64, 030303 (2001)
Andersson, E., Barnett, S.M., Gilson, C.R., Hunter, K.: Minimum-error discrimination between three mirror-symmetric states. Phys. Rev. A 65, 052308 (2002)
Chou, C.L., Hsu, L.Y.: Minimum-error discrimination between symmetric mixed quantum states. Phys. Rev. A 68, 042305 (2003)
Herzog, U., Bergou, J.A.: Minimum-error discrimination between subsets of linearly dependent quantum states. Phys. Rev. A 65, 050305 (2002)
Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257–259 (1987)
Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303–306 (1988)
Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1988)
Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197, 83–87 (1995)
Peres, A., Terno, D.R.: Optimal distinction between two non-orthogonal quantum states. J. Phys. A: Math. Gen. 31, 7105–7111 (1998)
Zhang, C.W., Li, C.F., Guo, G.C.: General strategies for discrimination of quantum states. Phys. Lett. A 261, 25–29 (1999)
Chefles, A., Barnett, S.M.: Optimum unambiguous discrimination between linearly independent symmetric states. Phys. Lett. A 250, 223–229 (1998)
Sun, Y., Bergou, J.A., Hillery, M.: Optimum unambiguous discrimination between subsets of nonorthogonal quantum states. Phys. Rev. A 66, 032315 (2002)
Eldar, Y.C.: A semidefinite programming approach to optimal unambiguous discrimination of quantum states. IEEE Trans. Inf. Theory 49, 446–456 (2003)
Qiu, D.: Optimum unambiguous discrimination between subsets of quantum states. Phys. Lett. A 309, 189–197 (2003)
Rudolph, T., Spekkens, R.W., Turner, P.S.: Unambiguous discrimination of mixed states. Phys. Rev. A 68, 010301 (2003)
Feng, Y., Duan, R., Ying, M.: Unambiguous discrimination between mixed quantum states. Phys. Rev. A 70, 012308 (2004)
Raynal, P., Lütkenhaus, N., van Enk, S.J.: Reduction theorems for optimal unambiguous state discrimination of density matrices. Phys. Rev. A 68, 022308 (2003)
Herzog, U., Bergou, J.A.: Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 71, 050301 (2005)
Raynal, P., Lütkenhaus, N.: Optimal unambiguous state discrimination of two density matrices: Lower bound and class of exact solutions. Phys. Rev. A 72, 022342 (2005)
Bergou, J.A., Feldman, E., Hillery, M.: Optimal unambiguous discrimination of two subspaces as a case in mixed-state discrimination. Phys. Rev. A 73, 032107 (2006)
Brańczyk, A.M., Mendonça, P.E.M.F., Gilchrist, A., Doherty, A.C., Bartlett, S.D.: Quantum control of a single qubit. Phys. Rev. A 75, 012329 (2007)
Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)
Yang, Y., Zhang, X.Y., Ma, J., Yi, X.X.: Extended techniques for feedback control of a single qubit. Phys. Rev. A 87, 012333 (2013)
Jacobs, K.: Feedback control for communication with non-orthogonal states. Quantum Inf. Comput. 7, 127–138 (2007)
Wang, C.Q., Xu, B.M., Zou, J., He, Z., Yan, Y., Li, J.G., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A 89, 032303 (2014)
Harraz, S., Cong, S., Li, K.: Two-qubit state recovery from amplitude damping based on weak measurement. eprint arXiv:1808.03094 (2018)
Cao, Y., Tian, G., Zhang, Z., Yang, Y., Wen, Q., Gao, F.: Composite control for protecting two nonorthogonal qubit states against decoherence. Phys. Rev. A 95, 032313 (2017)
Carvalho, A.R.R., Reid, A.J.S., Hope, J.J.: Controlling entanglement by direct quantum feedback. Phys. Rev. A 78, 012334 (2008)
Guo, L.S., Xu, B.M., Zou, J., Wang, C., Li, H., Li, J., Shao, B.: Discriminating two nonorthogonal states against a noise channel by feed-forward control. Phys. Rev. A 91, 022321 (2015)
Gillett, G.G., Dalton, R.B., Lanyon, B.P., Almeida, M.P., Barbieri, M., Pryde, G.J., O’Brien, J.L., Resch, K.J., Bartlett, S.D., White, A.G.: Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett. 104, 080503 (2010)
Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 61572053); Beijing Natural Science Foundation (Grant No. 4182006); Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201810).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yang, YG., Chen, N., Yang, YL. et al. Discriminating two non-orthogonal states against decoherence by feedback control. Quantum Inf Process 19, 69 (2020). https://doi.org/10.1007/s11128-019-2568-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2568-z