Skip to main content
Log in

Quantum designated verifier signature based on Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, Shi et al. proposed two quantum designated verifier signature (QDVS) schemes. First, we demonstrate the forgery attack and repudiation attack to Shi et al.’s quantum QDVS schemes. Then, a new QDVS scheme based on Bell states is proposed. Our scheme overcomes the security drawbacks of Shi et al.’s scheme. It is secure against forgery attack, repudiation attack, inter-resending attack, impersonation attack and Trojan horse attack. What is more, our scheme has a strong security. It can be proved to be information-theoretically secure. Our scheme also has the properties such as designated verification, non-transferability and hiding source. On the other hand, in our scheme, the partners need not use any quantum one-way function or perform any quantum state comparison algorithm. The qubit efficiency of our scheme can achieve 66.7%. Therefore, our scheme is more secure and efficient than the similar schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U. (ed.) Advances in Cryptology-Eurocrypt 1996, LNCS 1070, pp. 142–154. Springer, Berlin (1996)

    Google Scholar 

  2. Rastegari, P., Susilo, W., Dakhilalian, M.: Certificateless designated verifier signature revisited: achieving a concrete scheme in the standard model. Int. J. Inf. Secur. 18(5), 619–635 (2019)

    Article  Google Scholar 

  3. Kang, B., Boyd, C., Dawson, E.: A novel identity-based strong designated verifier signature scheme. J. Syst. Softw. 82(2), 270–273 (2009)

    Article  Google Scholar 

  4. Lee, J., Chang, J., Lee, D.: Forgery attacks on Kang et al.’s identity-based strong designated verifier signature scheme and its improvement with security proof. Comput. Electr. Eng. 36(5), 948–954 (2010)

    Article  ADS  Google Scholar 

  5. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  6. Shi, W.M., Zhou, Y.H., Yang, Y.G.: A real quantum designated verifier signature scheme. Int. J. Theor. Phys. 54, 3115–3123 (2015)

    Article  MathSciNet  Google Scholar 

  7. Shi, W.M., Wang, Y.M., Zhou, Y.H., Yang, Y.G., Zhang, J.B.: A scheme on converting quantum signature with public verifiability into quantum designated verifier signature. Optik 164, 753–759 (2018)

    Article  ADS  Google Scholar 

  8. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv: quant-ph/0105032 (2001)

  9. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  10. Zhang, Y., Zeng, J.: An improved arbitrated quantum scheme with Bell states. Int. J. Theor. Phys. 57, 994–1003 (2018)

    Article  MathSciNet  Google Scholar 

  11. Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18, 268 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. Xin, X., He, Q., Wang, Z., Yang, Q., Li, F.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik 189, 23–31 (2019)

    Article  ADS  Google Scholar 

  13. Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)

    Article  MathSciNet  Google Scholar 

  14. Wang, M.Q., Wang, X., Zhan, T.: An efficient quantum signature for classical messages. Quantum Inf. Process. 17, 275 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lou, X., Tang, W., Long, H., Cheng, Y.: A quantum blind signature scheme based on block encryption and quantum Fourier transfer. Int. J. Theor. Phys. 58(10), 3192–3202 (2019)

    Article  MathSciNet  Google Scholar 

  16. Xin, X., Wang, Z., Yang, Q.: Quantum signature scheme based on Hadamard and H π/4 operators. Appl. Opt. 58(27), 7346–7351 (2019)

    Article  ADS  Google Scholar 

  17. Zhang, J.L., Zhang, J.Z., Xie, S.C.: Improvement of a quantum proxy blind signature scheme. Int. J. Theor. Phys. 57, 1612–1621 (2018)

    Article  MathSciNet  Google Scholar 

  18. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  19. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A 65(03), 2302 (2002)

    Article  ADS  Google Scholar 

  20. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(04), 2317 (2003)

    Google Scholar 

  21. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–664 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  22. Menezes, A.J., Oorschot, P.V., Vanstone, S.A.: Handbook of applied cryptography. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  23. Yang, L., Yang, B., Pan, J.: Quantum public-key encryption with information theoretic security. In: Proceedings of SPIE—The International Society for Optical Engineering, IEEE press, New York, vol. 8440, (2010)

  24. Yang, L., Xiang, C., Li, B.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)

    Article  Google Scholar 

  25. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, X., Wang, Z., Yang, Q. et al. Quantum designated verifier signature based on Bell states. Quantum Inf Process 19, 79 (2020). https://doi.org/10.1007/s11128-019-2574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2574-1

Keywords

Navigation