Skip to main content
Log in

A new scheme of quantum teleportation using highly entangled brown et al. state: an IBM quantum experience

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum teleportation is a secure way to transfer an unknown message using a known channel implementing a simple and efficient protocol. Here, we achieve three-qubit and four-qubit quantum teleportation using a highly entangled Brown et al. state. We simulate the same using the IBM quantum experience platform. Furthermore, we extend this concept to generalize N-qubit teleportation which comprises of two cases, N being odd and even. The results are verified after designing the quantum circuits and simulating using the quantum simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Ekert, A.K.: Quantum cryptography. Sci. Am. 267, 50–57 (1992)

    Article  Google Scholar 

  2. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10, 297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennet, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classic and Einstein Podolsky Rosen channels. Phy. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MATH  Google Scholar 

  5. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  8. Agarwal, P., Pati, A.: Perfect teleportation and super dense coding with W state. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  9. Zhang, W., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  10. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information, vol. 1. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  11. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  MATH  Google Scholar 

  12. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  13. Cao, H.J., Song, H.S.: Teleportation of a single qubit state via unique W state. Theor. Phys. 46, 1636 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cao, Z.L., Song, W.: Teleportation of a two-particle entangled state via W class states. Physica A. 347, 177–183 (2005)

    Article  ADS  Google Scholar 

  15. Shang-Guan, L.Y., et al.: Perfect teleportation, super dense coding via a kind of W-class state. Int. J. Quantum Inf. 8, 1411 (2010)

    Article  MATH  Google Scholar 

  16. Chuang, L.D., Liang, C.Z.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464 (2007)

    Article  ADS  Google Scholar 

  17. Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)

    Article  MATH  Google Scholar 

  18. Li, D.F., Wang, R.J., Baagyere, E.: Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state. Quantum Inf. Process. 18, 1471 (2019)

    MathSciNet  Google Scholar 

  19. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38, 1119 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A Math. Gen. 40, 13407 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states, arXiv:0906.4323

  22. Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. IBM Quantum experience, URL: https://www.research.ibm.com/ibm-q/

  24. Aggarwal, D., Raj, S., Behera, B.K., Panigrahi, P.K.: Application of quantum scrambling in Rydberg atom on IBM quantum computer, arXiv:1806.00781

  25. Zhukov, A.A., Remizov, S.V., Pogosov, W.V., Lozovik, Y.E.: Algorithmic simulation of far-from-equilibrium dynamics using quantum computer. Quantum Inf. Process. 17, 223 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. Europhys. Lett. 119, 60002 (2017)

    Article  ADS  Google Scholar 

  27. Viyuela, O., et al.: Observation of topological Uhlmann phases with superconducting qubits. npj Quantum Inf. 4, 10 (2018)

    Article  ADS  Google Scholar 

  28. García-Martín, D., Sierra, G.: J. App. Math. Phys. 6, 1460 (2018)

    Article  Google Scholar 

  29. Jha, R., Das, D., Dash, A., Jayaraman, S., Behera, B.K., Panigrahi, P.K.: A novel quantum N-Queens solver algorithm and its simulation and application to satellite communication using IBM quantum experience, arXiv:1806.10221

  30. Gangopadhyay, S., Manabputra Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch-Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2017)

    Article  Google Scholar 

  32. Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)

    Article  ADS  Google Scholar 

  33. Swain, M., Rai, A., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of the violations of Mermin’s and Svetlichny’s inequalities for W and GHZ states. Quantum Inf. Process. 18, 218 (2019)

    Article  ADS  Google Scholar 

  34. Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Plesa, M.-I., Mihai, T.: A new quantum encryption scheme. Adv. J. Grad. Res. 4, 1 (2018)

    Article  Google Scholar 

  37. Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Roffe, J., Headley, D., Chancellor, N., Horsman, D., Kendon, V.: Protecting quantum memories using coherent parity check codes. Quantum Sci. Technol. 3, 035010 (2018)

    Article  ADS  Google Scholar 

  39. Satyajit, S., Srinivasan, K., Behera, B.K., Panigrahi, P.K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quantum Inf. Process. 17, 212 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: Quantum artificial life in an IBM quantum computer. Sci. Rep. 8, 14793 (2018)

    Article  ADS  Google Scholar 

  41. Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18, 108 (2019)

    Article  ADS  MATH  Google Scholar 

  42. Behera, B.K., Reza, T., Gupta, A., Panigrahi, P.K.: Designing quantum router in IBM quantum computer. Quantum Inf. Process. 18, 328 (2019)

    Article  ADS  Google Scholar 

  43. Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving Sudoku game using a hybrid classical-quantum algorithm. Euro. Phys. Lett. 128, 40007 (2019)

    Article  Google Scholar 

  44. Singh, V., Behera, B.K., Panigrahi, P.K.: Design of quantum circuits to play bingo game in a quantum computer (2019). https://doi.org/10.13140/RG.2.2.22727.34720

  45. Kumar, S., Singh, R.P., Behera, B.K., Panigrahi, P.K.: Quantum simulation of negative hydrogen ion using variational quantum eigensolver on IBM quantum computer, arXiv:1903.03454

  46. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  47. Rajiuddin, S.K., Baishya, A., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state. Quantum Inf. Process. 19, 87 (2020)

    Article  ADS  Google Scholar 

  48. Chatterjee, Y., Devrari, V., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation using coined quantum walks. Quantum Inf. Process. 19, 31 (2019)

    Article  ADS  Google Scholar 

  49. Dash, A.P., Sahu, S.K., Kar, S., Behera, B.K., Panigrahi, P.K.: Explicit demonstration of initial state construction in artificial neural networks using NetKet and IBM Q experience platform. Quantum Inf. Process. 19, 21 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  50. Dutta, S., Suau, A., Dutta, S., Roy, S., Behera, B.K., Panigrahi, P.K.: Demonstration of a quantum circuit design methodology for multiple regression, arXiv:1811.01726

  51. Shenoy, K.S., Sheth, D.Y., Behera, B.K., Panigrahi, P.K.: Demonstration of a measurement-based adaptation protocol with quantum reinforcement learning on the IBM quantum computer (2019). https://doi.org/10.13140/RG.2.2.12877.28641

  52. Adhikari, A., Behera, B.K., Panigrahi, P.K.: Circuit design for continuous time quantum walks on cycle graph and its experimental demonstration in IBM quantum computer https://doi.org/10.13140/RG.2.2.21140.76168

  53. Mahanti, S., Das, S., Behera, B.K., Panigrahi, P.K.: Quantum robots can fly; play games: an IBM quantum experience. Quantum Inf. Process. 18, 219 (2019)

    Article  ADS  Google Scholar 

  54. Mishra, N., Rayala, S.C., Behera, B.K., Panigrahi, P.K.: Automation of quantum Braitenberg vehicles using finite automata: Moore machines. Quantum Inf. Process. 19, 17 (2019)

    Article  ADS  Google Scholar 

  55. Sisodia, M., Shukla, A., de Almeida, A.A.A., Dueck, G.W., Pathak, A.: Circuit optimization for IBM processors: A way to get higher fidelity and higher values of nonclassicality witnesses arXiv:1812.11602

  56. de Almeida, A.A.Alexandre, Dueck, G.W., da Silva, C.R.Alexandre: CNOT gate optimizations via qubit permutations for IBM’s quantum architectures. J. Low Power Electron. 15, 182 (2019)

    Article  Google Scholar 

  57. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.M., A.M. and T.M. acknowledge the financial support provided by the Department of Science and Technology (DST), Government of India, through INSPIRE fellowship. B.K.B acknowledges the prestigious Prime Minister’s Research Fellowship awarded by DST, Govt. of India. The authors also acknowledge IISER Kolkata for the hospitality provided for the completion of this work. The results described in this paper are developed by the authors and do not reflect the opinions of the IBM or IBM QE team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash K. Behera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anagha, M., Mohan, A., Muruganandan, T. et al. A new scheme of quantum teleportation using highly entangled brown et al. state: an IBM quantum experience. Quantum Inf Process 19, 147 (2020). https://doi.org/10.1007/s11128-020-02635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02635-3

Keywords

Navigation