Skip to main content

Advertisement

Log in

Genuine tripartite nonlocality of GHZ state in noninertial frames

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the genuine tripartite nonlocality of Dirac fields in the noninertial frame while one or two observers are accelerated. We apply the Svetlichny inequalities and MABK inequalities to detect the local realistic description. It is difficult to calculate the Svetlichny inequalities for general states. Thus, we investigate the nonlocality of a tripartite GHZ state system in the noninertial frame. There are some subsystems violating the Svetlichny inequalities, which implies those subsystems are genuine tripartite nonlocality. But we find that all tripartite subsystems in the noninertial frames satisfy the MABK inequalities. These results may suggest that Svetlichny inequality is a better way than MABK inequality to research the local realistic description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  2. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  3. Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938 (1972)

    Article  ADS  Google Scholar 

  4. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

    Article  ADS  Google Scholar 

  5. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzes. Phys. Rev. Lett. 49, 1804 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hensen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 km. Nature 526, 682 (2015)

    Article  ADS  Google Scholar 

  7. Handsteiner, J., et al.: Cosmic Bell test measurement settings from Milky Way stars. Phys. Rev. Lett. 118, 060401 (2017)

    Article  ADS  Google Scholar 

  8. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  9. Greengerger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  10. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  11. Buhrman, H., Cleve, R., Massar, S., Wolf, R.D.: Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665 (2010)

    Article  ADS  Google Scholar 

  12. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dhara, C., Prettico, G., Antonio, A.: Maximal quantum randomness in Bell tests. Phys. Rev. A 88, 052116 (2013)

    Article  ADS  Google Scholar 

  14. Barrett, J., Hardy, L., Kent, A.: No signalling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  15. Bennett, C.H., et al.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  16. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  17. Huang, A.J., Wang, D., Wang, J.M., Shi, J.D., Sun, W.Y., Ye, L.: Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field. Quantum Inf. Process. 16, 204 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wang, D., Shi, W.N., Hoehn, R.D., Ming, F., Sun, W.Y., Ye, L., Kais, S.: Probing entropic uncertainty relations under a two-atom system coupled with structured bosonic reservoirs. Quantum Inf. Process. 17, 335 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  20. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ardehali, M.: Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 46, 5375 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  22. Belinskii, A.V., Klyshko, D.N.: Interference of light and Bell’s theorem. Phys. Usp. 36, 653 (1993)

    Article  ADS  Google Scholar 

  23. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  24. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  25. Hwang, M.R., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2011)

    Article  ADS  Google Scholar 

  26. Torres-Arenas, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-state in noninertial frames. Phys. Lett. B 789, 93 (2019)

    Article  ADS  Google Scholar 

  27. Brunner, N., Gisin, N., Scarani, V.: Entanglement and non-locality are different resources. New J. Phys. 7, 88 (2005)

    Article  ADS  Google Scholar 

  28. Zukowski, M., Brukner, C., Laskowski, W., Wiesniak, M.: Do all pure entangled states violates Bell’s inequalities for correlation functions? Phys. Rev. Lett. 88, 210402 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  29. Gallego, R., Würflinger, L.E., Acín, A., Navascués, M.: Operational Framework for Nonlocality. Phys. Rev. Lett. 109, 070401 (2012)

    Article  ADS  Google Scholar 

  30. Bancal, J.D., Barrett, J., Gisin, N., Pironio, S.: Definitions of multipartite nonlocality. Phys. Rev. A 88, 0440102 (2013)

    Article  Google Scholar 

  31. Mukherjee, K., Paul, B., Sarkar, D.: Efficient test to demonstrate genuine three particle nonlocality. J. Phys. A: Math. Theor. 48, 465302 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University, Cambridge (1982)

    Book  Google Scholar 

  33. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 670 (1976)

    ADS  Google Scholar 

  34. Wang, D., Ming, F., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame. Laser Phys. Lett. 14, 055205 (2017)

    Article  ADS  Google Scholar 

  35. Wang, J., Jing, J.: Quantum decoherence in noninertial frames. Phys. Rev. A 82, 032324 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. Wang, J., Deng, J.F., Jing, J.: Classical correlation and quantum discord sharing of Dirac field in noninertial frames. Phys. Rev. A 81, 052120 (2010)

    Article  ADS  Google Scholar 

  37. Yao, Y., Xiao, X., Ge, L., Wang, X.G., Sun, C.P.: Quantum fisher information in noninertial frames. Phys. Rev. A 89, 042336 (2014)

    Article  ADS  Google Scholar 

  38. Qiang, W.C., Dong, Q., Mercado Sanchez, M.A., Sun, G.H., Dong, S.H.: Entanglement property of the Werner state in accelerated frames. Quantum Inf. Process. 18, 314 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. Su, Z., Li, L., Ling, J.: An approach for quantitatively analyzing the genuine tripartite nonlocality of general three-qubit states. Quantum Inf. Process. 17, 85 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  40. Wang, K., Zheng, Z.J.: Violation of Svetlichny inequality in Triple Jaynes-Cummings Models. Preprint (2020)

  41. Lu, D.M.: Violation of Mermin–Ardehali–Belinksii–Klyshko inequality in the three-Jaynes-Cummings model. J. Mod. Opt. 66, 424 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC 11571119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Jun Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liang, Y. & Zheng, ZJ. Genuine tripartite nonlocality of GHZ state in noninertial frames. Quantum Inf Process 19, 140 (2020). https://doi.org/10.1007/s11128-020-02645-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02645-1

Keywords

Navigation