Skip to main content
Log in

Detection of steganography in quantum grayscale images

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum steganography is a tool using which the very act of communication can be concealed. To prevent steganography from being misused, the scheme of detection of least significant bit steganography in quantum images based on novel enhanced quantum representation of digital images is proposed. In this scheme, the quantum image is partitioning in pixel blocks at first. Then, according to how the value of the discrimination function f changes under the flipping function F, the pixel block can be divided into three types of groups that are regular group, singular group and unusable group, respectively. The number of regular and singular groups is used to determine whether the image is embedded with secret message and calculate the length (in percent of pixels) of secret message. A series of reversible logic circuits are designed to implement the scheme with the circuit complexity of \( {\rm O}\left( {q^{2} } \right) \), where q is the number of qubits to represent gray scale. Finally, simulation-based experiments demonstrate the feasibility of the detection of secret message in quantum gray images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Johnson, N.F., Jajodia, S.: Exploring steganography: seeing the unseen. Computer (Long Beach, Calif.) 31, 26–34 (1998). https://doi.org/10.1109/mc.1998.4655281

    Article  Google Scholar 

  2. Fridrich, J., Goljan, M., Du, R.: Reliable detection of LSB steganography in color and grayscale images. In: MM&Sec 01: Proceedings of the 2001 Workshop on Multimedia and security: new challenges, pp. 22–28 (2002)

  3. Vlasov, A.Y.: Quantum computations and images recognition. http://arxiv.org/abs/quant-ph/9703010

  4. Sch, R.: Pattern recognition on a quantum computer. Phys. Rev. A 67, 062311 (2002)

    Google Scholar 

  5. Beach, G., Lomont, C., Cohen, C.: Quantum Image Processing (QuIP). In: Applied Imagery Pattern Recognition Workshop, pp. 2–7 (2003)

  6. Kato, Z., Kato, T., Kondo, N., Orii, T.: Interstitial deletion of the short arm of chromosome 10: report of a case and review of the literature. Jpn. J. Hum. Genet. 41, 333–338 (1996)

    Article  Google Scholar 

  7. Venegas-Andraca, S., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceeding of SPIE—International Society for Optical Engineering, vol. 5105 (2003). https://doi.org/10.1117/12.485960

  8. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010). https://doi.org/10.1007/s11128-009-0123-z

    Article  MathSciNet  Google Scholar 

  9. Latorre, J.I.: Image compression and entanglement. http://arxiv.org/abs/quant-ph/0510031

  10. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011). https://doi.org/10.1007/s11128-010-0177-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013). https://doi.org/10.1007/s11128-013-0567-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Li, H., Zhu, Q., Li, M., Ian, H.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014). https://doi.org/10.1016/j.ins.2014.03.035

    Article  Google Scholar 

  13. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Fijany, A., Williams, C.P.: Quantum wavelet transforms: fast algorithms and complete circuits. In: Williams, C.P. (ed.) Quantum Computing and Quantum Communications, pp. 10–33. Springer, Berlin (1999)

    Chapter  Google Scholar 

  15. Tseng, C.C., Hwang, T.M.: Quantum circuit design of 8 × 8 discrete cosine transform using its fast computation flow graph. In: IEEE International Symposium on Circuits and Systems (2005)

  16. Klappenecker, A., Martin, R.: Discrete cosine transforms on quantum computers. In: Proceedings of International Symposium on Image and Signal Processing and Analysis, ISPA, vol. 11, pp. 464–468 (2016)

  17. Li, P., Liu, X.: Bilinear interpolation method for quantum images based on quantum Fourier transform. Int. J. Quantum Inf. 16, 1850031 (2018)

    Article  MathSciNet  Google Scholar 

  18. Zhou, R., Hu, W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7, 2511 (2017). https://doi.org/10.1038/s41598-017-02575-6

    Article  ADS  Google Scholar 

  19. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14, 1559–1571 (2015). https://doi.org/10.1007/s11128-014-0841-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fan, P., Zhou, R., Jing, N., Li, H.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. 340–341, 191–208 (2016). https://doi.org/10.1016/j.ins.2015.12.024

    Article  Google Scholar 

  21. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412, 1406–1418 (2011). https://doi.org/10.1016/j.tcs.2010.11.029

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhou, R., Qian, W., Man-Qun, Z., Chen-Yi, S.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Quantum Inf. 52, 1802–1817 (2013). https://doi.org/10.1007/s10773-012-1274-8

    Article  MathSciNet  Google Scholar 

  23. Yang, Y., Jia, X., Sun, S., Pan, Q.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. 277, 445–457 (2014). https://doi.org/10.1016/j.ins.2014.02.124

    Article  Google Scholar 

  24. Qu, Z., He, H., Li, T.: Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio. Chin. Phys. B 27, 010306 (2018). https://doi.org/10.1088/1674-1056/27/1/010306

    Article  ADS  Google Scholar 

  25. Song, X., Wang, S., Abd, A.A.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20, 379–388 (2014). https://doi.org/10.1007/s00530-014-0355-3

    Article  Google Scholar 

  26. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012). https://doi.org/10.1016/j.ins.2011.09.028

    Article  MathSciNet  MATH  Google Scholar 

  27. Caraiman, S., Manta, V.I.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014). https://doi.org/10.1016/j.tcs.2013.08.005

    Article  MathSciNet  MATH  Google Scholar 

  28. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14, 1693–1715 (2015). https://doi.org/10.1007/s11128-015-0932-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Wang, X., Yang, C., Xie, G.-S., Liu, Z.: Image thresholding segmentation on quantum state space. Entropy 20, 1–15 (2018). https://doi.org/10.3390/e20100728

    Article  Google Scholar 

  30. Abdel-Khalek, S., Abdel-Azim, G., Abo-Eleneen, Z.A., Obada, A.S.F.: New approach to image edge detection based on quantum entropy. J. Russ. Laser Res. 37, 141–154 (2016). https://doi.org/10.1007/s10946-016-9554-z

    Article  Google Scholar 

  31. Yao, X.-W., Wang, H., Liao, Z., Chen, M.-C., Pan, J., Li, J., Zhang, K., Lin, X., Wang, Z., Luo, Z., Zheng, W., Li, J., Zhao, M., Peng, X., Suter, D.: Quantum image processing and its application to edge detection: theory and experiment. Phys. Rev. X 7, 031041 (2017). https://doi.org/10.1103/PhysRevX.7.031041

    Article  Google Scholar 

  32. Yi, Z., Kai, L., Yinghui, G.: QSobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58, 1–13 (2015). https://doi.org/10.1007/s11432-014-5158-9

    Article  MATH  Google Scholar 

  33. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55, 107–123 (2016). https://doi.org/10.1007/s10773-015-2640-0

    Article  MATH  Google Scholar 

  34. Sang, J., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15, 4441–4460 (2016). https://doi.org/10.1007/s11128-016-1411-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15, 1849–1864 (2016). https://doi.org/10.1007/s11128-016-1260-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf. Process. 16, 242–270 (2017). https://doi.org/10.1007/s11128-017-1694-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Hu, W., Zhou, R., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16, 212–242 (2017). https://doi.org/10.1007/s11128-017-1640-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Li, P., Zhao, Y., Xiao, H., Cao, M.: An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling. Quantum Inf. Process. 16, 127 (2017). https://doi.org/10.1007/s11128-017-1577-z

    Article  ADS  MATH  Google Scholar 

  39. Zhou, W.H.R., Luo, J., Liu, B.: LSBs-based quantum color images watermarking algorithm in edge region. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-018-2138-9

    Article  MATH  Google Scholar 

  40. Vedral, V., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147 (1996). https://doi.org/10.1103/PhysRevA.54.147

    Article  ADS  MathSciNet  Google Scholar 

  41. Wang, D., Liu, Z.-H., Zhu, W.-N., Li, S.Z.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39, 302–306 (2012)

    Google Scholar 

  42. Zhou, R., Hu, W., Liu, X., Fan, P., Luo, G.: Quantum realization of the nearest neighbor value interpolation method for INEQR. Quantum Inf. Process. 17, 166–203 (2018). https://doi.org/10.1007/s11128-018-1921-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Barenco, A., Bennett, C.H., Cleve, R., Divincenzo, D.P., Margolus, N., Shor, P., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  44. Wang, Y., Li, Y.: 16-qubit IBM universal quantum computer can be fully entangled. npj Quantum Inf. 4, 1–6 (2018). https://doi.org/10.1038/s41534-018-0095-x

    Article  ADS  Google Scholar 

  45. Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55, 4205–4218 (2016). https://doi.org/10.1007/s10773-016-3046-3

    Article  MATH  Google Scholar 

  46. Wang, S., Sang, J., Song, X., Niu, X.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015). https://doi.org/10.1016/j.measurement.2015.05.038

    Article  Google Scholar 

  47. Mohseni, M., Read, P., Neven, H.: Commercialize early quantum technologies. Nature 543, 171–174 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Plan under Grant Nos. 2018YFC1200200 and 2018YFC1200205, National Natural Science Foundation of China under Grant No. 61463016 and “Science and technology innovation action plan” of Shanghai in 2017 under Grant No. 17510740300. And Scientific Research Fund of Hunan Provincial Education Department (Grant No. 18B420).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ri-Gui Zhou or GuangZhong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Zhou, RG., Hu, WW. et al. Detection of steganography in quantum grayscale images. Quantum Inf Process 19, 149 (2020). https://doi.org/10.1007/s11128-020-02649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02649-x

Keywords

Navigation