Skip to main content
Log in

Precision measurement of few charges in cavity optoelectromechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An efficient scheme for detecting charge numbers of nearby charged body is presented in the cavity optoelectromechanical system. This is realized by means of the sensitive relationship between the charge number and the measured photon number. The proposed scheme is feasible with experimentally accessible values and is applicable to precision measurement of electrical charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    Article  ADS  Google Scholar 

  2. Favero, I., Karrai, K.: Optomechanics of deformable optical cavities. Nat. Photon. 3, 201–205 (2009)

    Article  ADS  Google Scholar 

  3. Aspelmeyer, M., Gröblacher, S., Hammerer, K., Kiesel, N.: Quantum optomechanics-throwing a glance. J. Opt. Soc. Am. B 27, A189–A197 (2010)

    Article  ADS  Google Scholar 

  4. Aspelmeyer, M., Meystre, P., Schwab, K.: Quantum optomechanics. Phys. Today 65, 29 (2012)

    Article  Google Scholar 

  5. Metcalfe, M.: Applications of cavity optomechanics. Appl. Phys. Rev. 1, 031105 (2014)

    Article  ADS  Google Scholar 

  6. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  7. Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

  8. Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  9. Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature (London) 452, 72–75 (2008)

    Article  ADS  Google Scholar 

  10. Gröblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009)

    Article  ADS  Google Scholar 

  11. Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, A.J., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011)

    Article  ADS  Google Scholar 

  12. Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)

    Article  ADS  Google Scholar 

  13. Palomaki, T.A., Harlow, J.W., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013)

    Article  ADS  Google Scholar 

  14. Marquardt, F., Girvin, S.M.: Optomechanics. Physics 2, 40 (2009)

    Article  Google Scholar 

  15. Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G., Kippenberg, T.J.: Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 5, 509–514 (2009)

    Article  Google Scholar 

  16. Verlot, P., Tavernarakis, A., Briant, T., Cohadon, P.F., Heidmann, A.: Backaction amplification and quantum limits in optomechanical measurements. Phys. Rev. Lett. 104, 133602 (2010)

    Article  ADS  Google Scholar 

  17. He, W., Li, J.J., Zhu, K.D.: Coupling-rate determination based on radiation–pressure-induced normal mode splitting in cavity optomechanical systems. Opt. Lett. 35, 339–341 (2010)

    Article  ADS  Google Scholar 

  18. Krause, A.G., Winger, M., Blasius, T.D., Lin, Q., Painter, O.: A high-resolution microchip optomechanical accelerometer. Nat. Photon. 6, 768–772 (2012)

    Article  ADS  Google Scholar 

  19. Forstner, S., Prams, S., Knittel, J., van Ooijen, E.D., Swaim, J.D., Harris, G.I., Szorkovszky, A., Bowen, W.P., Rubinsztein-Dunlop, H.: Cavity optomechanical magnetometer. Phys. Rev. Lett. 108, 120801 (2012)

    Article  ADS  Google Scholar 

  20. Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012)

    Article  ADS  Google Scholar 

  21. Wang, Q., Zhang, J.Q., Ma, P.C., Yao, C.M., Feng, M.: Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Phys. Rev. A 91, 063827 (2015)

    Article  ADS  Google Scholar 

  22. Kong, C., Xiong, H., Wu, Y.: Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system. Phys. Rev. A 95, 033820 (2017)

    Article  ADS  Google Scholar 

  23. Xiong, H., Si, L.G., Wu, Y.: Precision measurement of electrical charges in an optomechanical system beyond linearized dynamics. Appl. Phys. Lett. 110, 171102 (2017)

    Article  ADS  Google Scholar 

  24. Xiong, H., Liu, Z.X., Wu, Y.: Highly sensitive optical sensor for precision measurement of electrical charges based on optomechanically induced difference-sideband generation. Opt. Lett. 42, 3630–3633 (2017)

    Article  ADS  Google Scholar 

  25. Liu, Z.X., Xiong, H.: Highly sensitive charge sensor based on atom-assisted high-order sideband generation in a hybrid optomechanical system. Sensors 18, 3833 (2018)

    Article  MathSciNet  Google Scholar 

  26. Li, L., Yang, W.X., Zhang, Y.X., Shui, T.: Enhanced generation of charge-dependent second-order sideband and high-sensitivity charge sensors in a gain-cavity-assisted optomechanical system. Phys. Rev. A 98, 063840 (2018)

    Article  ADS  Google Scholar 

  27. Kómár, P., Bennett, S.D., Stannigel, K., Habraken, S.J.M., Rabl, P., Zoller, P., Lukin, M.D.: Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A 87, 013839 (2013)

    Article  ADS  Google Scholar 

  28. Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.M.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 90, 043825 (2014)

    Article  ADS  Google Scholar 

  29. Chen, R.X., Shen, L.T., Zheng, S.B.: Dissipation-induced optomechanical entanglement with the assistance of Coulomb interaction. Phys. Rev. A 91, 022326 (2015)

    Article  ADS  Google Scholar 

  30. Tian, T., Zoller, P.: Coupled ion-nanomechanical systems. Phys. Rev. Lett. 93, 266403 (2004)

    Article  ADS  Google Scholar 

  31. Hensinger, W.K., Utami, D.W., Goan, H.S., Schwab, K., Monroe, C., Milburn, G.J.: Ion trap transducers for quantum electromechanical oscillators. Phys. Rev. A 72, 041405(R) (2005)

    Article  ADS  Google Scholar 

  32. Huang, S., Agarwal, G.S.: Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys. Rev. A 83, 023823 (2011)

    Article  ADS  Google Scholar 

  33. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803(R) (2010)

    Article  ADS  Google Scholar 

  34. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic, Orlando (1980)

    MATH  Google Scholar 

  35. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 11674094, 11774089, 11874146, and 11981260012) and the Shanghai Natural Science Foundation (Grant Nos. 17ZR1442700, 18DZ2252400, and 18ZR1410500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongwei Lin, Yueping Niu or Shangqing Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., You, Y., Lin, G. et al. Precision measurement of few charges in cavity optoelectromechanical system. Quantum Inf Process 19, 167 (2020). https://doi.org/10.1007/s11128-020-02658-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02658-w

Keywords

Navigation