Abstract
An efficient scheme for detecting charge numbers of nearby charged body is presented in the cavity optoelectromechanical system. This is realized by means of the sensitive relationship between the charge number and the measured photon number. The proposed scheme is feasible with experimentally accessible values and is applicable to precision measurement of electrical charge.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)
Favero, I., Karrai, K.: Optomechanics of deformable optical cavities. Nat. Photon. 3, 201–205 (2009)
Aspelmeyer, M., Gröblacher, S., Hammerer, K., Kiesel, N.: Quantum optomechanics-throwing a glance. J. Opt. Soc. Am. B 27, A189–A197 (2010)
Aspelmeyer, M., Meystre, P., Schwab, K.: Quantum optomechanics. Phys. Today 65, 29 (2012)
Metcalfe, M.: Applications of cavity optomechanics. Appl. Phys. Rev. 1, 031105 (2014)
Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)
Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)
Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)
Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature (London) 452, 72–75 (2008)
Gröblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009)
Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, A.J., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011)
Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)
Palomaki, T.A., Harlow, J.W., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013)
Marquardt, F., Girvin, S.M.: Optomechanics. Physics 2, 40 (2009)
Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G., Kippenberg, T.J.: Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 5, 509–514 (2009)
Verlot, P., Tavernarakis, A., Briant, T., Cohadon, P.F., Heidmann, A.: Backaction amplification and quantum limits in optomechanical measurements. Phys. Rev. Lett. 104, 133602 (2010)
He, W., Li, J.J., Zhu, K.D.: Coupling-rate determination based on radiation–pressure-induced normal mode splitting in cavity optomechanical systems. Opt. Lett. 35, 339–341 (2010)
Krause, A.G., Winger, M., Blasius, T.D., Lin, Q., Painter, O.: A high-resolution microchip optomechanical accelerometer. Nat. Photon. 6, 768–772 (2012)
Forstner, S., Prams, S., Knittel, J., van Ooijen, E.D., Swaim, J.D., Harris, G.I., Szorkovszky, A., Bowen, W.P., Rubinsztein-Dunlop, H.: Cavity optomechanical magnetometer. Phys. Rev. Lett. 108, 120801 (2012)
Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012)
Wang, Q., Zhang, J.Q., Ma, P.C., Yao, C.M., Feng, M.: Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Phys. Rev. A 91, 063827 (2015)
Kong, C., Xiong, H., Wu, Y.: Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system. Phys. Rev. A 95, 033820 (2017)
Xiong, H., Si, L.G., Wu, Y.: Precision measurement of electrical charges in an optomechanical system beyond linearized dynamics. Appl. Phys. Lett. 110, 171102 (2017)
Xiong, H., Liu, Z.X., Wu, Y.: Highly sensitive optical sensor for precision measurement of electrical charges based on optomechanically induced difference-sideband generation. Opt. Lett. 42, 3630–3633 (2017)
Liu, Z.X., Xiong, H.: Highly sensitive charge sensor based on atom-assisted high-order sideband generation in a hybrid optomechanical system. Sensors 18, 3833 (2018)
Li, L., Yang, W.X., Zhang, Y.X., Shui, T.: Enhanced generation of charge-dependent second-order sideband and high-sensitivity charge sensors in a gain-cavity-assisted optomechanical system. Phys. Rev. A 98, 063840 (2018)
Kómár, P., Bennett, S.D., Stannigel, K., Habraken, S.J.M., Rabl, P., Zoller, P., Lukin, M.D.: Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A 87, 013839 (2013)
Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.M.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 90, 043825 (2014)
Chen, R.X., Shen, L.T., Zheng, S.B.: Dissipation-induced optomechanical entanglement with the assistance of Coulomb interaction. Phys. Rev. A 91, 022326 (2015)
Tian, T., Zoller, P.: Coupled ion-nanomechanical systems. Phys. Rev. Lett. 93, 266403 (2004)
Hensinger, W.K., Utami, D.W., Goan, H.S., Schwab, K., Monroe, C., Milburn, G.J.: Ion trap transducers for quantum electromechanical oscillators. Phys. Rev. A 72, 041405(R) (2005)
Huang, S., Agarwal, G.S.: Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys. Rev. A 83, 023823 (2011)
Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803(R) (2010)
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic, Orlando (1980)
Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grants Nos. 11674094, 11774089, 11874146, and 11981260012) and the Shanghai Natural Science Foundation (Grant Nos. 17ZR1442700, 18DZ2252400, and 18ZR1410500).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Feng, L., You, Y., Lin, G. et al. Precision measurement of few charges in cavity optoelectromechanical system. Quantum Inf Process 19, 167 (2020). https://doi.org/10.1007/s11128-020-02658-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02658-w