Abstract
Quantum digital signature (QDS) in principle can provide the information-theoretic security based on the laws of quantum mechanics. The scheme of quantum digital signature that does not require trusted quantum channels has been presented. However, the performance in both signature rate and transmission distance remains to be improved. In this paper, we present a scheme on implementing the single-photon-added coherent state (SPACS) into QDS. We use the BB84 protocol as an example and compare its performance with the case of using the weak coherent state (WCS). Our simulation results indicate that the performance of the QDS system utilizing SPACS can greatly exceed those using WCS.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)
Wei, H.R., Deng, F.G.: Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep. 4, 7551 (2014)
Bennett, C.H., Brassard, G.: In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, p. 175. IEEE, New York (1984)
Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement-device-independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)
Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)
Lucamarini, M., Yuan, Z., Dynes, J., Shields, A.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400 (2018)
Wang, S., Yin, Z.Q., Chen, W., He, D.Y., Song, X.T., Li, H.W., Zhang, L.J., Zhou, Z., Guo, G.C., Han, Z.F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photonics 9, 832 (2015)
Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)
Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032
Arrazola, J.M., Lütkenhaus, N.: Quantum communication with coherent states and linear optics. Phys. Rev. A 90, 042335 (2014)
Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3, 1174 (2012)
Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112, 040502 (2014)
Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91, 042304 (2015)
Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113, 040502 (2014)
Donaldson, R.J., Collins, R.J., Kleczkowska, K., Amiri, R., Wallden, P., Dunjko, V., Jeffers, J., Andersson, E., Buller, G.S.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A 93, 012329 (2016)
Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93, 032325 (2016)
Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A 93, 032316 (2016)
Croal, C., Peuntinger, C., Heim, B., Khan, I., Marquardt, C., Leuchs, G., Wallden, P., Andersson, E., Korolkova, N.: Free-space quantum signatures using heterodyne measurements. Phys. Rev. Lett. 117, 100503 (2016)
Collins, R.J., Amiri, R., Fujiwara, M., Honjo, T., Shimizu, K., Tamaki, K., Takeoka, M., Andersson, E., Buller, G.S., Sasaki, M.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41, 4883 (2016)
Yin, H.L., Wang, W.L., Tang, Y.L., Zhao, Q., Liu, H., Sun, X.X., Zhang, W.J., Li, H., Puthoor, I.V., You, L.X., Andersson, E., Wang, Z., Liu, Y., Jiang, X., Ma, X., Zhang, Q., Curty, M., Chen, T.Y., Pan, J.W.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95, 042338 (2017)
Yin, H.L., Fu, Y., Liu, H., Liu, Q.J., Wang, X.J., You, L.X., Zhang, W.J., Chen, S.J., Wang, Z., Zhang, Q., Chen, T.Y., Chen, Z.B., Pan, J.W.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95, 032334 (2017)
Roberts, G.L., Lucamarini, M., Yuan, Z.L., Dynes, J.F., Comandar, L.C., Sharpe, A.W., Shields, A.J., Curty, M., Puthoor, I.V., Andersson, E.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8, 1098 (2017)
Zhang, C.H., Zhou, X.Y., Ding, H.J., Zhang, C.M., Guo, G.C., Wang, Q.: Proof-of-principle demonstration of passive decoy-state quantum digital signatures over 200 km. Phys. Rev. Appl. 10, 034033 (2018)
An, X.B., Zhang, H., Zhang, C.M., Chen, W., Wang, S., Yin, Z.Q., Wang, Q., He, D.Y., Hao, P.L., Liu, S.F., Zhou, X.Y., Guo, G.C., Han, Z.F.: Practical quantum digital signature with a gigahertz BB84 quantum key distribution system: erratum. Opt. Lett. 44, 139 (2019)
Chen, J.M., Zhang, H., Zhou, X.Y., Zhang, C.M., Wang, Q.: Practical decoy-state quantum digital signature with optimized parameters. Phys. A 535, 122341 (2019)
Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492 (1991)
Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)
Zavatta, A., Viciani, S., Bellini, M.: Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission. Phys. Rev. A 72, 023820 (2005)
Serfling, R.J.: Probability inequalities for the sum in sampling without replacement. Ann. Stat. 2, 39 (1974)
Zavatta, A., Viciani, S., Bellini, M.: Non-classical field characterization by high-frequency, time-domain quantum homodyne tomography. Laser Phys. Lett. 3, 3 (2006)
Barbieri, M., Spagnolo, N., Genoni, M.G., Ferreyrol, F., Blandino, R., Paris, M.G.A., Grangier, P., Tualle-Brouri, R.: Non-Gaussianity of quantum states: an experimental test on single-photon-added coherent states. Phys. Rev. A 82, 063833 (2010)
Bellini, M., Coelho, A.S., Filippov, S.N., Manko, V.I., Zavatta, A.: Towards higher precision and operational use of optical homodyne tomograms. Phys. Rev. A 85, 052129 (2012)
Filippov, S.N., Manko, V.I., Coelho, A.S., Zavatta, A., Bellini, M.: Single-photon-added coherent states: estimation of parameters and fidelity of the optical homodyne detection. Phys. Scr. T 153, 014025 (2013)
Shringarpure, S.U., Franson, J.D.: Generating photon-added states without adding a photon. Phys. Rev. A 100, 043802 (2019)
Wang, D., Li, M., Zhu, F., Yin, Z.Q., Chen, W., Han, Z.F., Guo, G.C., Wang, Q.: Quantum key distribution with the single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014)
Wang, D., Li, M., Guo, G.C., Wang, Q.: An improved scheme on decoy-state method for measurement-device-independent quantum key distribution. Sci. Rep. 5, 15130 (2015)
Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)
Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13 (1963)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)
Xu, F., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)
Wang, Q., Chen, W., Xavier, G., Swillo, M., Zhang, T., Sauge, S., Tengner, M., Han, Z.F., Guo, G.C., Karlsson, A.: Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys. Rev. Lett. 100, 090501 (2008)
Zhou, X.Y., Zhang, C.H., Zhang, C.M., Wang, Q.: Wang: obtaining better performance in the measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 96, 052337 (2017)
Acknowledgements
We gratefully acknowledge the financial support from the National Key R&D Program of China through Grant Nos. 2018YFA0306400, 2017YFA0304100, the National Natural Science Foundation of China through Grants Nos. 11774180, 61590932, 61705110, 11847215, and the Leading-edge technology Program of Jiangsu Natural Science Foundation (BK20192001).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, JJ., Zhang, CH., Chen, JM. et al. Improving the performance of decoy-state quantum digital signature with single-photon-added coherent sources. Quantum Inf Process 19, 198 (2020). https://doi.org/10.1007/s11128-020-02695-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02695-5