Abstract
The problems of the real-time and high-precision image processing, even the powerful classical computers and their algorithms, are not satisfactory solution. With the emerging quantum technology, quantum image representation that shines can ease these solutions. The quantum Richardson–Lucy algorithm is proposed on controlled rotation operation and Hamiltonian evolution. To begin with, a flexible representation of the quantum image model is used as the basis of image representation, and the amplitude is manipulated by controlled rotation gate. Then, the controlled rotation operation is completed, and then, the algorithm only needs the quantum state on the first quantum register, and the algorithm constructs an quantum gate by Hamiltonian evolution on the register, which is to realize the quantum gate Richardson–Lucy function. Finally, the quantum state after controlled rotation is further operated by the quantum gate constructed by non-sparse Hamiltonian evolution technique, and all quantum states storing color information are reduced to clear quantum images. The simulation results show that the algorithm has the best effect on motion blur, and the peak signal-to-noise ratio can reach 31.3985 under small blur degree. The processing result of Gaussian noise is worse than that of pure motion blur, with a peak signal-to-noise ratio of 26.5232.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Venegas-Andraca, S.E., Ball, J.L.: Storing Images in engtangled quantum systems. (2003), arXiv:quantph/0402085
Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference Quantum Information and Computation, vol. 5105, pp. 137–147 (2003). https://doi.org/10.1117/12.485960
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)
Klappenecker, A., Rötteler, M.: Discrete cosine transforms on quantum computers. In: Proceedings of the IEEER8-EURASIP Symposium on Image and Signal Processing and Analysis (ISPA01), pp. 464-468, Pula, Croatia (2001)
Tseng, C.C., Hwang, T.M.: Quantum circuit design of \(8\times 8\) discrete cosine transforms using its fast computation flow graph. In: IEEE International Symposium on Circuits and Systems, pp. 828–831 (2005)
Latorre, J.I.: Image compression and entanglement. (2005), arXiv:quant-ph/0510031
Shi, P., Li, N.C., Wang, S.M., Liu, Z., Ren, M.R., Ma, H.Y.: Quantum multi-user broadcast protocol for the platform as a service model. Sensors 19(23), 5257 (2019)
Ma, H.Y., Teng, J.K., Hu, T., Shi, P., Wang, S.M.: Co-communication Protocol of Underwater Sensor Networks with Quantum and Acoustic Communication Capabilities. Wirel. Pers. Commun. 113, 337–347 (2020)
Caraiman, S., Manta, V.I.: New applications of quantum algorithms to computer graphics: the quantum random sample consensus algorithm. In: Proceedings of the 6th ACM conference on Computing frontiers, pp. 81–88. Ischia, Italy. ACM, New York, (2009)
Curtis, D., Meyer, D.A.: Towards quantum template matching. Proc. SPIE 5161, 134–141 (2004)
Kak, S.: On quantum neural computing. Inf. Sci. 83(3), 143–160 (1995)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Publishing House of Electronics Industry, Beijing (2002)
Venegas-Andraca S E, Ball J L.: Storing images in entangled quantum systems. arXiv: quant-ph/0402085, (2003)
Venegas-Andraca, S.E., Ball, J.L., Burnett, K., Bose, S.: Quantum walks with entangled coins. New J. Phys. 7(1), 221 (2005)
Venegas-Andraca, S.E, Bose, S.: Quantun computation and image processing: New trends in artificial intelligence. In: Proceeding of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563-1564. Acapulco, Mexico, (2003)
Latorre, J.I.: Image compression and entanglement. arXiv: quant-ph/0510031, (2005)
Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)
Liu, K., Zhang, Y., Lu, K., Wang, X.: Restoration for Noise Removal in Quantum Images. Int. J. Theor. Phys. 56(9), 2867–2886 (2017)
Liu, J., Yuan, H.: Control-enhanced multiparameter quantum estimation. Phys. Rev. A 96(4), 042114 (2017)
Liu, J., Yuan, H.: Quantum parameter estimation with optimal control. Phys. Rev. A 96(1), 012117 (2017)
Banchi, L., Pancotti, N., Bose, S.: Quantum gate learning in qubit networks: Toffoli gate without time-dependent control. npj Quantum Information 21(1), 1–6 (2016)
Tian, J., Leng, Y., Zhao, Z., Xia, Y., Sang, Y., Hao, P., Zhan, J., Li, M., Liu, H.: Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy 11, 419–427 (2015)
Chongqiang, Y., Tianyu, Y.: Circular Multi-Party Quantum Private Comparison with n-Level Single-Particle States. Int. J. Theor. Phys. 58, 1282 (2019)
Qin, L.-G., Wang, Z.-Y., Wu, S.-C., Gong, S.-Q., Ma, H.-Y., Jing, J.: Vacuum-induced quantum memory in an opto-electromechanical system. Opt. Commun. 410, 102–107 (2018)
Gong, L., Qiu, K., Deng, C., Zhou, N.: An image compression and encryption algorithm based on chaotic system and compressive sensing. Opt. Laser Technol. 115, 257–267 (2019)
Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)
Ma, H.Y., Xu, P.A., Shao, C.S., Chen, L.B., Li, J.X., Pan, Q.: Quantum private query based on stable error correcting code in the case of noise. Wirel. Pers. Commun. 58(12), 4241–4248 (2019)
Gao, F., Qin, S., Huang, W., Wen, Q.: Quantum private query: a new kind of practical quantum cryptographic protocol. Sci. China (Physics, Mechanics and Astronomy) 62(07), 10–21 (2019)
Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412, 14061418 (2011)
Sun, B., Le, P.Q., Iliyasu, A.M., Yan, F., Garcia, J.A., Dong, F., Hirota, K.: A multi-channel representation for images on quantum computersusingtheRGBcolorspace. In: Proceedings of the IEEE 7th International Symposium on Intelligent Signal Processing, 160165 (2011)
Yan, F., Le, P.Q., Iliyasu, A.M., Sun, B., Garcia, J.A., Dong, F., Hirota, K.: Assessing the similarity of quantum images based on probability measurements. In: IEEE Congress on Evolutionary Computation, p. 16 (2012)
Caraiman, S., Manta, V.I.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 4660 (2014)
Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126149 (2012)
Song, X.H., Wang, S., Liu, S., Ellatif, A.A., Niu, X.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 36893706 (2013)
Zhou, R., Wu, Q., Zhang, M., Shen, C.: Quantum image encryption and decryption algorithms based on quantum image geometric tranformations. Int. J. Theor. Phys. 52(6), 18021817 (2013)
Zhou, N., Hu, Y., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16(6), 164 (2017)
Wu, G.-T., Zhou, N.-R., Gong, L.-H., Liu, S.-Q.: Quantum dialogue protocols with identification over collection noisy channel without information leakage. Acta Phys. Sin. 63(06), 060302 (2014)
Qin, L.-G., Wang, Z.-Y., Ma, H.-Y., Wang, S.-M., Gong, S.-Q.: Electrically controlled optical switch in the hybrid opto-electromechanical system. Chin. Phys. B 26(12), 128502 (2017)
Zhou, N., Chen, W., Yan, X., Wang, Y.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 17(6), 137 (2018)
Chen, L.-Q., Sheng, Y.-B., Zhou, L.: Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit. Chin. Phys. B 28(1), 1056–1674 (2019)
Wang, M.-H., Cai, Q.-Y.: High-fidelity quantum cloning of two nonorthogonal quantum states via weak measurements. Phys. Rev. A 99(1), 012324 (2019)
Mo, X.-T., Xue, Z.-Y.: Single-step multipartite entangled states generation from coupled circuit cavities. Front. Phys. 14(3), 31602 (2019)
Yang, Y.-G., Gao, S., Li, D., Zhou, Y.-H., Shi, W.-M.: Three-party quantum secret sharing against collective noise. Quantum Inf. Process. 18(7), 215 (2019)
Li, B.-M., Hu, M.-L., Fan, H.: Quantum coherence. Acta Phys. Sin. 68(3), 030304 (2019)
Cheng, L.-Y., Guo, Q., Wang, H.-F., Zhang, S.: Direct entanglement measurement of Werner state with cavity-assisted spin-photon interaction system. Quantum Inf. Process. 18(7), 214 (2019)
Li, Y., Jin, X.-M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2019)
Yang, L., Ma, H.-Y., Zheng, C., Ding, X.-L., Gao, J.-C., Long, G.-L.: Quantum communication scheme based on quantum teleportation. Acta Phys. Sin. 66(23), 230303 (2017)
Ma, H.-Y., Qin, G.-Q., Fan, X.-K., Chu, P.-C.: Quantum network direct communication protocol over noisy channel. Acta Phys. Sin. 64(16), 160306 (2015)
lucy, L.B.: An iterative technique for the retufication of observed distribution. Astron. J. 79(6), 745–754 (1974)
White, R.L.: Image restoration using the damped Rechardson-Lucy method. Proc. SPIE 2198, 1342–1348 (1994)
Venegas-Andraca, S.E, Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Conmputation, pp. 137-150. Orlando, FL, (2003)
Li, P., Song, K., Er-long, Y.: Controlled-rotation gate-based quantum neural networks model algorithm with apllication. Control Decis. 26(6), 898–901 (2011)
Liu, J., Jing, X., Wang, X.: Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 88(4), 042316 (2013)
Liu, J., Yuan, H., Lu, X., Wang, X.: Quantum Fisher information matrix and multiparameter estimation. J. Phys. A Math. Theor. 53(2), 023001 (2019)
Dowling, J.P., Seshadreesan, K.P.: Quantum optical technologies for metrology, sensing, and imaging. J. Lightwave Technol. 33(12), 2359–2370 (2015)
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)
Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270(2), 359–371 (2007). arXiv: quant-ph/0508139
Childs, A.M.: On the relationship between continuous and discrete-time quantum walk. (2008), arXiv: 0810.0312
Acknowledgements
The work was supported by the Shandong Province Higher Educational Science and Technology Program (Grant No. J18KZ012), and the National Natural Science Foundation of China (Grant No.11975132,61772295), and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019YQ01).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ma, H., He, Z., Xu, P. et al. A Quantum Richardson–Lucy image restoration algorithm based on controlled rotation operation and Hamiltonian evolution. Quantum Inf Process 19, 237 (2020). https://doi.org/10.1007/s11128-020-02723-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02723-4