Abstract
Mid-point filter is an order statistic filter which cannot be realized in the frequency domain. It is used for de-noising Gaussian noise effectively. In this paper, a new method for quantum realization mid-point filter in the spatial domain is proposed. An enhanced method for preparing multiple copies of the same image is also proposed. The modular design of the quantum circuit was utilized with an articulation on reducing the number of ancillary qubits. In this work, we present the quantum circuit for the three basic modules (cyclic shift, swap and division by two) and four composite modules (full adder, comparator, sort and maximum–minimum extraction). Also, the enhanced quantum preparation of multiple copies of an image is introduced. Moreover, the design of maximum–minimum extraction is modified to adapt our quantum circuit design. Finally, the complete quantum circuit which implements the mid-point filtering task is constructed and the results of several simulation experiments with different noise patterns are presented on some grayscale images. Apparently, the proposed approach has identical noise suppression of the classical version; however, there is a clear reduction in the complexity from exponential function of image size \(O(2^{2n})\) to the second-order polynomial \(O(n^{2} + q)\).



















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Caraiman, S., Manta, V.I.: Quantum image filtering in the frequency domain. Adv. Electr. Comput. Eng. 13(3), 77–84 (2013). https://doi.org/10.4316/AECE.2013.03013
Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015). https://doi.org/10.1007/s11128-015-0932-1
Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. arXiv preprint arXiv:quant-ph/0410184 (2004)
Du, S., Qiu, D., Mateus, P., Gruska, J.: Enhanced double random phase encryption of quantum images. Results Phys. 13, 102161 (2019). https://doi.org/10.1016/j.rinp.2019.102161
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Upper Saddle River (2006)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, ACM, New York, NY, USA, STOC’96, pp. 212–219 (1996). https://doi.org/10.1145/237814.237866
Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015). https://doi.org/10.1007/s11128-014-0841-8
Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015). https://doi.org/10.1007/s11128-015-1099-5
Jiang, N., Zhao, N., Wang, L.: Lsb based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016). https://doi.org/10.1007/s10773-015-2640-0
Jiang, S., Zhou, R.G., Hu, W., Li, Y.: Improved quantum image median filtering in the spatial domain. Int. J. Theor. Phys. 58(7), 2115–2133 (2019). https://doi.org/10.1007/s10773-019-04103-w
Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. Int. J. Appl. Math. 40, 3 (2010)
Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011a). https://doi.org/10.1007/s11128-010-0177-y
Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011). https://doi.org/10.1016/j.tcs.2010.11.029
Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013). https://doi.org/10.1007/s11128-012-0521-5
Li, P., Liu, X., Xiao, H.: Quantum image weighted average filtering in spatial domain. Int. J. Theor. Phys. 56(11), 3690–3716 (2017). https://doi.org/10.1007/s10773-017-3533-1
Li, P., Liu, X., Xiao, H.: Quantum image median filtering in the spatial domain. Quantum Inf. Process. 17(3), 49 (2018). https://doi.org/10.1007/s11128-018-1826-9
Lomont, C.: Quantum convolution and quantum correlation algorithms are physically impossible. arXiv preprint arXiv:quant-ph/0309070 (2003)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)
Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for frqi and neqr. Quantum Inf. Process. 15(1), 37–64 (2016). https://doi.org/10.1007/s11128-015-1135-5
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700
Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Donkor, E., Pirich, A.R., Brandt, H.E. (eds.) Quantum Information and Computation, International Society for Optics and Photonics, SPIE, vol. 5105, pp. 137–147 (2003). https://doi.org/10.1117/12.485960
Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015). https://doi.org/10.1007/s11128-014-0843-6
Xia, H., Li, H., Zhang, H., Liang, Y., Xin, J.: An efficient design of reversible multi-bit quantum comparator via only a single ancillary bit. Int. J. Theor. Phys. 57(12), 3727–3744 (2018). https://doi.org/10.1007/s10773-018-3886-0
Yan, F., Iliyasu, A.M., Jiang, Z.: Quantum computation-based image representation, processing operations and their applications. Entropy 16(10), 5290–5338 (2014). https://doi.org/10.3390/e16105290
Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016). https://doi.org/10.1007/s11128-015-1195-6
Yuan, S., Mao, X., Zhou, J., Wang, X.: Quantum image filtering in the spatial domain. Int. J. Theor. Phys. 56(8), 2495–2511 (2017). https://doi.org/10.1007/s10773-017-3403-x
Yuan, S., Lu, Y., Mao, X., Luo, Y., Yuan, J.: Improved quantum image filtering in the spatial domain. Int. J. Theor. Phys. 57(3), 804–813 (2018). https://doi.org/10.1007/s10773-017-3614-1
Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013). https://doi.org/10.1007/s11128-013-0567-z
Zhang, Y., Lu, K., Xu, K., Gao, Y., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015). https://doi.org/10.1007/s11128-014-0842-7
Zhou, R., Hu, W., Luo, G., Liu, X., Fan, P.: Quantum realization of the nearest neighbor value interpolation method for ineqr. Quantum Inf. Process. 17(7), 166 (2018). https://doi.org/10.1007/s11128-018-1921-y
Zhou, R.G., Hu, W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for neqr. Sci.c Rep. 7(1), 2511 (2017a). https://doi.org/10.1038/s41598-017-02575-6
Zhou, R.G., Tan, C., Ian, H.: Global and local translation designs of quantum image based on frqi. Int. J. Theor. Phys. 56(4), 1382–1398 (2017b). https://doi.org/10.1007/s10773-017-3279-9
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ali, A.E., Abdel-Galil, H. & Mohamed, S. Quantum image mid-point filter. Quantum Inf Process 19, 238 (2020). https://doi.org/10.1007/s11128-020-02738-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02738-x