Skip to main content
Log in

Detection of genuine tripartite entanglement in quantum network scenario

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Experimental demonstration of entanglement needs to have a precise control of experimentalist over the system on which the measurements are performed as prescribed by an appropriate entanglement witness. To avoid such trust problem, recently, device-independent entanglement witnesses (DIEWs) for genuine tripartite entanglement have been proposed where witnesses are capable of testing genuine entanglement without precise description of Hilbert space dimension and measured operators i.e. apparatus are treated as black boxes. Here, we design a protocol for enhancing the possibility of identifying genuine tripartite entanglement in a device independent manner. We consider three mixed tripartite quantum states none of whose genuine entanglement can be detected by applying certain DIEWs, but their genuine tripartite entanglement can be detected by applying the same when distributed in some suitable entanglement swapping network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    ADS  MathSciNet  Google Scholar 

  2. Sørensen, A.S., Mølmer, K.: Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431 (2001)

    ADS  Google Scholar 

  3. Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., PezzÁ’e, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    ADS  Google Scholar 

  4. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett 86, 5188 (2001)

    ADS  Google Scholar 

  5. Briegel, H.J., et al.: Measurement-based quantum computation. Nat. Phys. 5, 19 (2009)

    Google Scholar 

  6. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    ADS  Google Scholar 

  7. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Scarani, V., Gisin, N.: Quantum communication between N p[artners and Bell’s inequalities. Phys. Rev. Lett. 87, 117901 (2001)

    ADS  Google Scholar 

  9. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54 (2004)

    ADS  Google Scholar 

  10. Yao, X.-C., et al.: Observation of eight-photon entanglement. Nat. Photon 6, 225–228 (2012)

    ADS  Google Scholar 

  11. Gao, W.-B., et al.: Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nat. Phys. 6, 331–335 (2010)

    Google Scholar 

  12. Monz, T., et al.: 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    ADS  Google Scholar 

  13. Altepeter, J.B., James, D.F.V., Kwiat, P.G.: 4 qubit quantum state tomography. Lect. Notes Phys. 649, 113–145 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Lvovsky, A.I., Raymer, M.G.: Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299–332 (2009)

    ADS  Google Scholar 

  15. Rosset, D., Ferretti-Schöbitz, R., Bancal, J.-D., Gisin, N., Liang, Y.-C.: Imperfect measurement settings: implications for quantum state tomography and entanglement witnesses. Phys. Rev. A 86, 062325 (2012)

    ADS  Google Scholar 

  16. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    MathSciNet  Google Scholar 

  17. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    ADS  Google Scholar 

  18. Seevinck, M., Uffink, J.: Sufficient conditions for three-particle entanglement and their tests in recent experiments. Phys. Rev. A 65, 012107 (2001)

    ADS  Google Scholar 

  19. Nagata, K., Koashi, M., Imoto, N.: Configuration of separability and tests for multipartite entanglement in bell-type experiments. Phys. Rev. Lett. 89, 260401 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Uffink, J.: Quadratic bell inequalities as tests for multipartite entanglement. Phys. Rev. Lett. 88, 230406 (2002)

    ADS  MathSciNet  Google Scholar 

  21. Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Bancal, J.-D., Gisin, N., Liang, Y.-C., Pironio, S.: Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett 106, 250404 (2011)

    ADS  Google Scholar 

  23. Pál, K.F., Vértesi, T.: Multisetting bell-type inequalities for detecting genuine multipartite entanglement. Phys. Rev. A 83, 062123 (2011)

    ADS  Google Scholar 

  24. Liang, Y.-C., Rosset, D., Bancal, J.-D., Pütz, G., Barnea, T.J., Gisin, N.: Family of bell-like inequalities as device-independent witnesses for entanglement depth. Phys. Rev. Lett. 114, 190401 (2015)

    ADS  MathSciNet  Google Scholar 

  25. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    ADS  Google Scholar 

  26. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)

    ADS  Google Scholar 

  27. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    ADS  Google Scholar 

  28. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    ADS  Google Scholar 

  29. Horodecki, M., Horodecki, P., Horodecki, R.: Inseparable two spin-\(\frac{1}{2}\) density matrices can be distilled to a singlet form. Phys. Rev. Lett. 78, 574 (1997)

    ADS  MATH  Google Scholar 

  30. Linden, N., Massar, S., Popescu, S.: Purifying noisy entanglement requires collective measurements. Phys. Rev. Lett. 81, 3279 (1998)

    ADS  Google Scholar 

  31. Kent, A.: Entangled mixed states and local purification. Phys. Rev. Lett. 81, 2839 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Entanglement purification of Gaussian continuous variable quantum states. Phys. Rev. Lett. 84, 4002 (2000)

    ADS  MATH  Google Scholar 

  33. Pan, J.-W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nat. (Lond.) 410, 1067 (2001)

    ADS  Google Scholar 

  34. Dür, W., Aschauer, H., Briegel, H.-J.: Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91, 107903 (2003)

    ADS  MathSciNet  Google Scholar 

  35. Nakazato, H., Takazawa, T., Yuasa, K.: Purification through zeno-like measurements. Phys. Rev. Lett. 90, 060401 (2003)

    ADS  Google Scholar 

  36. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    ADS  Google Scholar 

  37. Zhao, Z., Pan, J.-W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    ADS  Google Scholar 

  38. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    ADS  Google Scholar 

  39. Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nat. (Lond.) 423, 417 (2003)

    ADS  Google Scholar 

  40. Yang, M., Song, W., Cao, Z.L.: Entanglement purification for arbitrary unknown ionic states via linear optics. Phys. Rev. A 71, 012308 (2005)

    ADS  Google Scholar 

  41. Fan, H., Wang, Z.D., Vedral, V.: Entanglement swapping of the valence-bond solid state with local filtering operations. arXiv:0903.3791 (2009)

  42. Song, W., Yang, M., Cao, Z.-L.: Purifying entanglement of noisy two-qubit states via entanglement swapping. Phys. Rev. A 89, 014303 (2014)

    ADS  Google Scholar 

  43. Zhang, L.H., Yang, M., Cao, Z.L.: Entanglement concentration for unknown W class states. Phys. A 374, 611 (2007)

    Google Scholar 

  44. Huber, M., Plesch, M.: Purification of genuine multipartite entanglement. Phys. Rev. A 83, 062321 (2011)

    ADS  Google Scholar 

  45. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)

    ADS  MathSciNet  Google Scholar 

  47. Bancal, J.-D., Barrett, J., Gisin, N., Pironio, S.: Definitions of multipartite nonlocality. Phys. Rev. A 88, 014102 (2013)

    ADS  Google Scholar 

  48. Ma, Z.-H., Chen, Z.-H., Chen, J.-L., Spengler, C., Gabriel, A., Huber, M.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2011)

    ADS  Google Scholar 

  49. Hashemi Rafsanjani, S.M., Huber, M., Broadbent, C.J., Eberly, J.H.: Genuinely multipartite concurrence of N-qubit X matrices. Phys. Rev. A 86, 062303 (2012)

    ADS  Google Scholar 

  50. Barreiro, J.T., Bancal, J.-D., Schindler, P., Nigg, D., Hennrich, M., Monz, T., Gisin, N., Blatt, R.: Demonstration of genuine multipartite entanglement with device-independent witnesses. Nat. Phys. 9, 559 (2013)

    Google Scholar 

  51. Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Goebel, A.M., Wagenknecht, C., Zhang, Q., Chen, Y.-A., Chen, K., Schmiedmayer, J., Pan, J.-W.: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403 (2008)

    ADS  Google Scholar 

  53. Cavalcanti, D., Skrzypczyk, P., Aguilar, G.H., Nery, R.V., Souto Ribeiro, P.H., Walborn, S.P.: Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nat. Commun. 6, 7941 (2015)

    ADS  Google Scholar 

  54. Zhao, Z., Yang, T., Chen, Y., Zhang, A.-N., Pan, J.-W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)

    ADS  Google Scholar 

  55. Mukherjee, K., Paul, B., Sarkar, D.: Efficient test to demonstrate genuine three particle nonlocality. J. Phys. A Math. Theor. 48, 465302 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to gratefully acknowledge fruitful discussions with Prof. Guruprasad Kar. We also thank Tamal Guha and Mir Alimuddin for useful discussions. AM acknowledges support from the CSIR project 09/093(0148)/2012-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Condition for violation of DIEWs

Appendix A: Condition for violation of DIEWs

We are now going to enlist the DIEWs which are used as tools for DIED in main text.

Mermin DIEW [18]:

$$\begin{aligned} M = |\langle A_1B_0C_0\rangle + \langle A_0B_1C_0\rangle + \langle A_0B_0C_1\rangle - \langle A_1B_1C_1 \rangle | \le 2\sqrt{2}. \end{aligned}$$
(A1)

Uffink DIEW [20] :

$$\begin{aligned}&\langle A_1B_0C_0 + A_0B_1C_0 + A_0B_0C_1 - A_1B_1C_1 \rangle ^2 +\nonumber \\&\langle A_1B_1C_0 + A_0B_1C_1 + A_1B_0C_1 - A_0B_0C_0 \rangle ^2 \le 8. \end{aligned}$$
(A2)

Bancal et al. DIEW [22] : already discussed in Eq. (10).

Liang et al. DIEW [24] :

$$\begin{aligned}&\frac{1}{4}(\langle A_0B_0C_0\rangle + \langle A_0B_1C_0\rangle + \langle A_0B_0C_1\rangle + \langle A_0B_1C_1\rangle +\nonumber \\&\quad \langle A_1B_0C_0\rangle + \langle A_1B_1C_0\rangle +\langle A_1B_0C_1\rangle - 3 \langle A_1B_1C_1\rangle ) \le \sqrt{2}. \end{aligned}$$
(A3)

Now, we present the detailed proofs of the results stated in the main text. To obtain the condition of violation of each of the DIEWs (Eqs. A1A210A3) in terms of state parameters for each of the initial states \(\rho _i (i = 1, 2, 3)\) and final state \(\rho _4\), we apply the same method as used in [55]. First, we find the condition of violation (in terms of state parameters) of the DIEW given in Eq. (A1) for the initial state \(\rho _1\). We consider the following measurements: \(A_0 = {\vec {x}}.\vec {\sigma _1} \) or \(A_1 = \vec {\acute{x}}.\vec {\sigma _1}\) on \(1^{st}\) qubit, \(B_0 = \vec {y}.\vec {\sigma _2} \) or \(B_1 = \vec {\acute{y}}.\vec {\sigma _2}\) on \(2^{nd}\) qubit, and \(C_0 = \vec {z}.\vec {\sigma _3} \) or \(C_1 = \vec {\acute{z}}.\vec {\sigma _3}\) on \(3^{rd}\) qubit, where \(\vec {x},\vec {\acute{x}},\vec {y},\vec {\acute{y}}\) and \(\vec {z},\vec {\acute{z}}\) are unit vectors and \(\sigma _i\) are the spin projection operators that can be written in terms of the Pauli matrices. Representing the unit vectors in spherical coordinates, we have, \(\vec {x} = (\sin \theta a_0 \cos \phi a_0, \sin \theta a_0 \sin \phi a_0, \cos \theta a_0), ~~\vec {y} = (\sin \alpha b_0 \cos \beta b_0, \sin \alpha b_0 \sin \beta b_0, \cos \alpha b_0) \) and \(\vec {z} = (\sin \zeta c_0 \cos \eta c_0, \sin \zeta c_0 \sin \eta c_0, \cos \zeta c_0) \) and similarly, we define, \(\vec {\acute{x}},\vec {\acute{y}}\) and \(\vec {\acute{z}}\) by replacing 0 in the indices by 1. Then, the value of the operator M (Eq. A1) with respect to the state \(\rho _1\) (Eq. 6) gives:

$$\begin{aligned} M(\rho _1)= & {} -\cos \alpha b_1 (-1 + p + p \cos 2 \theta )(\cos \zeta c_0\cos \theta a_1+\cos \zeta c_1\cos \theta a_0)\nonumber \\&-\sin \alpha b_1(p \sin 2\theta )(\cos (\beta b_1+\eta c_1+\phi a_0)\sin \zeta c_1\sin \theta a_0\nonumber \\&+\cos (\beta b_1+\eta c_0 +\phi a_1)\sin \zeta c_0\sin \theta a_1)\nonumber \\&+\cos \alpha b_0 (-1 + p + p \cos 2 \theta )(\cos \zeta c_0\cos \theta a_0-\cos \zeta c_1\cos \theta a_1)+\nonumber \\&\quad \sin \alpha b_0(p \sin 2\theta )(\cos (\beta b_0+\eta c_0+\phi a_0)\sin \zeta c_0\sin \theta a_0\nonumber \\&-\cos (\beta b_0+\eta c_1+\phi a_1)\sin \zeta c_1\sin \theta a_1). \end{aligned}$$
(A4)

Hence, in order to get maximum value of \(S(\rho _1)\), we have to perform maximization over 12 measurement angles. Now if we maximize the last equation with respect to \(\alpha b_0\) and \(\alpha b_1\), we have

$$\begin{aligned}&M(\rho _1) \le \sqrt{((X)(\cos \zeta c_0\cos \theta a_1+\cos \zeta c_1\cos \theta a_0))^2+(Y)^2(A_{110}\sin \zeta c_1\sin \theta a_0 + A_{101}\sin \zeta c_0\sin \theta a_1)^2}\nonumber \\&\quad + \sqrt{((X)(\cos \zeta c_0\cos \theta a_0-\cos \zeta c_1\cos \theta a_1))^2 +(Y)^2(A_{000}\sin \zeta c_0\sin \theta a_0-A_{011}\sin \zeta c_1\sin \theta a_1)^2} \end{aligned}$$
(A5)

Where \(X = -1 + p + p \cos 2 \theta \), \(Y = p \sin 2\theta \), and \(A_{ijk} = \cos (\beta b_i+\eta c_j +\phi a_k) (i, j, k \in \{0,1\})\). The last inequality is obtained by using the inequality \(x\cos \theta + y \sin \theta \le \sqrt{x^2 + y^2}\). It is clear from the symmetry of the measurement angles \(\theta a_0\) , \(\zeta c_0\) and \(\theta a_1\) , \(\zeta c_1\) that the right-hand side of Eq. (A5) gives maximum value when \(\theta a_0 = \zeta c_0\) and \(\theta a_1 = \zeta c_1\). Hence, Eq. (A5) takes the form:

$$\begin{aligned}&M(\rho _1) \le \sqrt{((X)(2\cos \theta a_0\cos \theta a_1))^2+(Y \sin \theta a_0\sin \theta a_1)^2(A_{110} + A_{101})^2} +\nonumber \\&\quad \sqrt{((X)(\cos ^2\theta a_0-\cos ^2\theta a_1))^2 +(Y)^2(A_{000}\sin ^2\theta a_0-A_{011}\sin ^2\theta a_1)^2} \end{aligned}$$
(A6)

Again, we maximize it with respect to \(\theta a_1\). Critical point 0 or \(\frac{\pi }{2}\) gives the maximum value depending on values of the state parameters. For the critical point 0, Eq. (A6) becomes

$$\begin{aligned} M(\rho _1) \le \sqrt{(2 X \cos \theta a_0)^2} + \sqrt{\sin ^4\theta a_0(X^2+Y^2)} \end{aligned}$$
(A7)

where we have chosen \(A^2_{000} = 1\). Maximizing over \(\theta a_{0}\), we get

$$\begin{aligned} M(\rho _1) \le \frac{2 X^2 + Y^2}{\sqrt{X^2+Y^2}} \end{aligned}$$
(A8)

the maximum being obtained for \(\cos \theta a_0 = \frac{|X|}{\sqrt{X^2 + Y^2}}\). For the other critical point \(\frac{\pi }{2}\), Eq. (A6) takes the form:

$$\begin{aligned}&M(\rho _1) \le \sqrt{(Y \sin \theta a_0)^2(A_{110} + A_{101})^2}\nonumber \\&\qquad + \sqrt{X^2\cos ^4\theta a_0 + Y^2(A_{000}\sin ^2\theta a_0-A_{011})^2}\nonumber \\&\quad \le \sqrt{4(Y \sin \theta a_0)^2} + \sqrt{X^2\cos ^4\theta a_0 + Y^2(\sin ^2\theta a_0+1)^2}\nonumber \\&\le 4 |Y| \end{aligned}$$
(A9)

The second inequality in Eq. (A9) is obtained from the first by setting \(A_{110} = 1\), \(A_{101} = 1\), \(A_{000} = 1\) and \(A_{011} = -1.\) The final inequality is achieved when \(\theta a_0 = \frac{\pi }{2}\) . Two sets of measurement angles which realize the two values \(\frac{2 X^2 + Y^2}{\sqrt{X^2+Y^2}}\) (Eq. A8) and 4|Y| (Eq. A9), are \(\theta a_0 = \alpha b_0 = \zeta c_0 = \cos ^{-1}(\frac{|X|}{\sqrt{X^2 + Y^2}}) \), \(\theta a_1 = \alpha b_1 = \zeta c_1 = 0 \), \(\beta b_i= \eta c_i = \phi a_i = 0\) (i = 0, 1) and \(\theta a_i = \alpha b_i = \zeta c_i = \frac{\pi }{2}\)(i = 0, 1) , \(\beta b_0 = \eta c_0 = \phi a_0 = 0\), \(\beta b_1 = -\eta c_1 = -\phi a_1 = \frac{\pi }{2}\), respectively. Hence, from Eq. (A8) and Eq. (A9), we have

$$\begin{aligned} M(\rho _1) \le \max [\frac{2 X^2 + Y^2}{\sqrt{X^2+Y^2}} , 4 |Y|] . \end{aligned}$$
(A10)

Clearly, \(\frac{2 X^2 + Y^2}{\sqrt{X^2+Y^2}}\le 2 < 2 \sqrt{2} \) for any value of \(p \in [0,1]\) and \(0 \le \theta \le \frac{\pi }{4}.\) So the initial state \(\rho _1\) violates the DIEW based on Mermin expression (Eq. A1) if

$$\begin{aligned} 4 |Y| = 4 | p | \sin 2\theta > 2 \sqrt{2} . \end{aligned}$$
(A11)

The last inequality is considered as the condition of violation of the DIEW based on Mermin expression for the initial state \(\rho _1\). We have applied the same method over other states \(\rho _i\) (i = 2, 3, 4)to find the condition of violation of the DIEW based on Mermin expression. For other DIEWS (Eqs. A2, 10, A3), we have made analysis in similar manner so as to obtain the condition of violation for each of states \(\rho _i\). All the conditions are summarized in Table 1. However, among the four DIEWs given by Mermin (Eq. A1), Uffink (Eq. A2), Bancal et al. (Eq. 10) and Liang et al. (Eq. A3), the one given by Bancal et al. turns out to be the most efficient for this purpose. The DIEW based on Bancal et al. polynomial (Eq. 10) can thus detect genuine tripartite entanglement in a device-independent way in \(\rho _1\) for \(p > \frac{2}{3\sin 2\theta }\) (see Table 1). As \(\frac{2}{3\sin 2\theta }< \frac{1}{\sqrt{2}\sin 2\theta } < \frac{3\sqrt{2}}{5\sin 2\theta }\), so the DIEW based on Bancal et al. polynomial (Eq. 10) is the most efficient DIEW for the state \(\rho _1\) to detect genuine tripartite entanglement among all the standard DIEWs considered in Eqs. (A1), (A2), (10), (A3). Similarly by comparing the range of violation of \(p_1\) (for the state \(\rho _2\)) and p (for the state \(\rho _3\), \(\rho _4\)), one can check that Bancal et al. Bell inequality is the best DIEW for the other states \(\rho _i\) (i = 2, 3, 4) to detect genuine tripartite entanglement compared to other standard DIEWs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, B., Mukherjee, K., Karmakar, S. et al. Detection of genuine tripartite entanglement in quantum network scenario. Quantum Inf Process 19, 246 (2020). https://doi.org/10.1007/s11128-020-02750-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02750-1

Keywords

Navigation