Skip to main content
Log in

Quantum discord based on linear entropy and thermal negativity of qutrit–qubit mixed spin chain under the influence of external magnetic field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a reliable analytical method to evaluate the non-classical correlations based on linear entropy for an arbitrary qudit–qubit quantum state. The linear entropy is used to overcome the difficulty of the maximization of the classical correlations encountered when the von Neumann entropy is used in determining quantum discord. The quantum discord based on linear entropy is employed to derive the amount of quantum correlations in a qutrit–qubit mixed spin system in the thermal equilibrium at temperature T. We investigate also the situation when the system is embedded in an external magnetic field. The obtained amount of quantum discord is then compared with the measurement-induced disturbance (MID) and logarithmic negativity. The analysis shows that both QD and MID are more robust than entanglement. Besides, QD and MID can be exploited to determine the critical points of quantum phase transitions in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)

    ADS  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys, Rev. A. 59, 156–161 (1999)

    ADS  Google Scholar 

  7. Datta, A., Flammia, A.T., Caves, C.M.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 72, 042316 (2005)

    ADS  Google Scholar 

  8. Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)

    ADS  MathSciNet  Google Scholar 

  9. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    ADS  Google Scholar 

  10. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    ADS  Google Scholar 

  11. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    ADS  Google Scholar 

  12. Bennett, C.H., et al.: Phys: Quantum nonlocality without entanglement. Rev. A 59, 1070 (1999)

    MathSciNet  Google Scholar 

  13. Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)

    ADS  MATH  Google Scholar 

  14. Ferraro, A., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A. 81, 052318 (2010)

    ADS  Google Scholar 

  15. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    ADS  MATH  Google Scholar 

  16. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Shabani, A., Lidar, D.A.: Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett 102, 100402 (2009)

    ADS  Google Scholar 

  18. Galve, F., Giorgi, G.L., Zambrini, R.: Maximally discordant mixed states of two qubits. Phys. Rev. A 83, 012102 (2011)

    ADS  Google Scholar 

  19. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A. 83, 052108 (2011)

    ADS  Google Scholar 

  20. Ali, M.: Quantum discord for a two-parameter class of states in \(2\otimes d\) quantum systems. J. Phys. A 43, 495303 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Daoud, M., Ahl Laamara, R.: Quantum discord for multipartite coherent states interpolating between Werner and Greenberger-Horne-Zeilinger states. Int. J. Quantum Inform. 10, 1250060 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Daoud, M., Ahl Laamara, R.: Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states. Phys. Lett. A 376, 2361 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    ADS  Google Scholar 

  24. Sen, A., Bhar, A., Sarkar, D.: Local quantum uncertainty and bounds on quantumness for orthogonally invariant class of states. Quantum Inf. Process 14, 269–285 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen, A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)

    ADS  MATH  Google Scholar 

  26. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    ADS  Google Scholar 

  27. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    ADS  MATH  Google Scholar 

  28. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)

    ADS  Google Scholar 

  29. Ma, Z., Chen, Z., Fanchini, F.F., Fei, S.M.: Quantum discord for \(d\otimes 2\) systems. Sci. Rep. 5, 10262 (2015)

    ADS  Google Scholar 

  30. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Parkinson, J.B., Farnell, D.J.J.: An introduction to quantum spin systems, vol. 816. Springer, Berlin (2010)

    MATH  Google Scholar 

  32. Xue, P., Zhan, X., Bian, Z.: Experimental linear-optics simulation of ground-state of an Ising spin chain. Sci. Rep. 7, 2183 (2017)

    ADS  Google Scholar 

  33. Hälg, M., Lorenz, W.E.A., Povarov, K.Y., Månsson, M., Skourski, Y., Zheludev, A.: Quantum spin chains with frustration due to Dzyaloshinskii–Moriya interactions. Phys. Rev. B. 90, 174413 (2014)

    ADS  Google Scholar 

  34. Duan, L.M., Demler, E., Lukin, M.D.: Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003)

    ADS  Google Scholar 

  35. Schollwöck, U., Richter, J., Farnell, D.J.J., Bishop, R.F.: Quantum Magnetism, vol. 645. Springer, Berlin (2004)

    Google Scholar 

  36. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    ADS  Google Scholar 

  37. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    ADS  Google Scholar 

  38. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008)

    ADS  Google Scholar 

  39. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    ADS  Google Scholar 

  40. Shaukat, M.I., Slaoui, A., Terças, H., Daoud, M.: Phonon-mediated quantum discord in dark solitons. (2019). arXiv:1903.06627

  41. Zhang, G.F., Hou, Y.C., Ji, A.L.: Measurement-induced disturbance and thermal negativity of qutrit–qubit mixed spin chain. Solid State Commun. 151, 790 (2011)

    ADS  Google Scholar 

  42. Li, J.Q., Liang, J.Q.: Quantum and classical correlations in a classical dephasing environment. Phys. Lett. A 375, 1496 (2011)

    ADS  MATH  Google Scholar 

  43. Li, L.S., Tao, Y.H., Nan, H., Xu, H.: Super-quantum correlation for \(SU(2)\) invariant state in \(4\otimes 2\) system. Quantum Inf. Process. 17, 86 (2018)

    ADS  MATH  Google Scholar 

  44. Khedif, Y., Daoud, M., Sayouty, E.: Thermal quantum correlations in a two-qubit Heisenberg XXZ spin-chain under an inhomogeneous magnetic field. Phys. Scr. 94, 125106 (2019)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadwa Benabdallah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benabdallah, F., Slaoui, A. & Daoud, M. Quantum discord based on linear entropy and thermal negativity of qutrit–qubit mixed spin chain under the influence of external magnetic field. Quantum Inf Process 19, 252 (2020). https://doi.org/10.1007/s11128-020-02754-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02754-x

Keywords

Navigation