Skip to main content

Advertisement

Log in

One-step implementation of a robust Fredkin gate based on path engineering

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a scheme to generate a Fredkin gate in a single step based on path engineering. The quantum Zeno dynamics is utilized to simplify the Hamiltonian. As a result, an effective Hamiltonian will be obtained to drive the system to evolve into the target state in a short time if reasonable parameters are set. In addition, the results of explicit numerical simulations indicate that the scheme is robust against the instability of experimental parameters and the decoherence arising from atomic spontaneous emission and cavity decay. Most importantly, our scheme is just a single step, which greatly simplifies actual operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wright, K., Beck, K.M., Debnath, S., et al.: Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019)

    ADS  Google Scholar 

  2. Figgatt, C., Ostrander, A., Linke, N.M., et al.: Parallel entangling operations on a universal ion-trap quantum computer. Nature 572, 368 (2019)

    ADS  Google Scholar 

  3. Behera, B.K., Reza, T., Gupta, A., et al.: Designing quantum router in IBM quantum computer. Quantum Inf Process 18, 328 (2019)

    ADS  Google Scholar 

  4. You, J.Q., Tsai, J.S., Nori, F.: Scalable quantum computing with Josephson charge qubits. Phys. Rev. Lett. 89, 197902 (2002)

    ADS  Google Scholar 

  5. Wei, L.F., Nori, F.: An efficient single-step scheme for manipulating quantum information of two trapped ions beyond the Lamb-Dicke limit. Phys. Lett. A 320, 131 (2003)

    ADS  MATH  Google Scholar 

  6. Tanamoto, T., Liu, Y., Hu, X., Nori, F.: Efficient quantum circuits for one-way quantum computing. Phys. Rev. Lett. 102, 100501 (2009)

    ADS  Google Scholar 

  7. Wei, L.F., Johansson, J.R., Cen, L.X., Ashhab, S., Nori, F.: Controllable coherent population transfers in superconducting qubits for quantum computing. Phys. Rev. Lett. 110, 113601 (2008)

    ADS  Google Scholar 

  8. You, J.Q., Wang, X., Tanamoto, T., Nori, F.: Efficient one-step generation of large cluster states with solid-state circuits. Phys. Rev. A 75, 052319 (2007)

    ADS  Google Scholar 

  9. Tashima, T., Tame, M.S., Ozdemir, S.K., Nori, F., Koashi, M., Weinfurter, H.: Photonic multipartite entanglement conversion using nonlocal operations. Phys. Rev. A 94, 052309 (2016)

    ADS  Google Scholar 

  10. Ashhab, S., Groot, P.C.D., Nori, F.: Speed limits for quantum gates in multiqubit systems. Phys. Rev. A 85, 052327 (2012)

    ADS  Google Scholar 

  11. Wei, L.F., Liu, Y., Storcz, M.J., Nori, F.: Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits. Phys. Rev. A 73, 052307 (2006)

    ADS  Google Scholar 

  12. Groot, P.C.D., Ashhab, S., Lupascu, A., et al.: Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates. New J. Phys. 14, 073038 (2012)

    Google Scholar 

  13. Huang, Y.Y., Wu, Y.K., Wang, F., et al.: Experimental realization of robust geometric quantum gates with solid-state spins. Phys. Rev. Lett. 122, 010503 (2019)

    ADS  Google Scholar 

  14. Liu, B.J., Song, X.K., Xue, Z.Y., Wang, X., Yung, M.H.: Plug-and-play approach to nonadiabatic geometric quantum gates. Phys. Rev. Lett. 123, 100501 (2019)

    ADS  Google Scholar 

  15. Tan, T.R., Gaebler, J.P., Lin, Y., Wan, Y., Bowler, R., Leibfried, D., Wineland, D.J.: Multi-element logic gates for trapped-ion qubits. Nature 528, 380 (2009)

    ADS  Google Scholar 

  16. Tang, S.Q., Zhang, D.Y., Xie, L.J., Zhan, X.G., Gao, F.: Selective atom-cavity interaction scheme for quantum controlled-NOT gate using four-level atoms in cavity QED system. Commun. Theor. Phys. 51, 247 (2009)

    ADS  Google Scholar 

  17. Rosenblum, S., Gao, Y.Y., Reinhold, P., et al.: A CNOT gate between multiphoton qubits encoded in two cavities. Nat. Commu. 9, 652 (2008)

    ADS  Google Scholar 

  18. Cesa, A., Martin, J.: Two-qubit entangling gates between distant atomic qubits in a lattice. Phys. Rev. A 95, 052330 (2017)

    ADS  MathSciNet  Google Scholar 

  19. Chuang, I.L., Yamamoto, Y.: Quantum bit regeneration. Phys. Rev. Lett. 76, 4281 (1996)

    ADS  Google Scholar 

  20. Cory, D.G., Price, M.D., Maas, W., Knill, E., Laflamme, R., Zurek, W.H., Havel, T.F., Somaroo, S.S.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152 (1998)

    ADS  Google Scholar 

  21. Hofmann, H.F.: Weak values emerge in joint measurements on cloned quantum systems. Phys. Rev. Lett. 109, 020408 (2012)

    ADS  Google Scholar 

  22. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    ADS  Google Scholar 

  23. Horn, R.T., Babichev, S.A., Marzlin, K.P., Lvovsky, A.I., Sanders, B.C.: Single-qubit optical quantum fingerprinting. Phys. Rev. Lett. 95, 150502 (2005)

    ADS  Google Scholar 

  24. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 [quant-ph]

  25. Chau, H.F., Wilczek, F.: Simple realization of the Fredkin gate using a series of two-body operators. Phys. Rev. Lett. 75, 748 (1995)

    ADS  Google Scholar 

  26. Smolin, J.A., DiVincenzo, D.P.: Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A 53, 2855 (1996)

    ADS  Google Scholar 

  27. Gong, Y.X., Guo, G.C., Ralph, T.C.: Methods for a linear optical quantum Fredkin gate. Phys. Rev. A 78, 012305 (2008)

    ADS  Google Scholar 

  28. Shi, Z.C., Xia, Y., Song, J., Song, H.: One-step implementation of the Fredkin gate via quantum Zeno dynamics. Quantum Inf. Process. 12, 0215 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Liu, T., Guo, B.Q., Yu, C.S., Zhang, W.N.: One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications. Opt. Eepress. 46, 4498 (2018)

    ADS  Google Scholar 

  30. Sun, G.Q., Wu, J.L., Niu, W., Yu, W.R., Ji, X.: Remote implementation of a Fredkin gate via virtual excitation of an atom-cavity-fiber system. Ann. Phys. (Berlin) 532, 1900372 (2019)

    ADS  Google Scholar 

  31. Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42, 365303 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Chen, Y.H., Xia, Y., Song, J., Chen, Q.Q.: Shortcuts to adiabatic passage for fast generation of Greenberger–Horne–Zeilinger states by transitionless quantum driving. Sci. Rep. 5, 15616 (2015)

    ADS  Google Scholar 

  33. Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Huang, X.B., Zhong, Z.R., Chen, Y.H.: Generation of multi-atom entangled states in coupled cavities via transitionless quantum driving. Quantum Inf. Process. 14, 4475 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Shan, W.J., Xia, Y., Chen, Y.H., Song, J.: Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving. Quantum Inf. Process. 15, 2359 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Chen, Z., Chen, Y.H., Xia, Y., Song, J., Huang, B.H.: Fast generation of three-atom singlet state by transitionless quantum driving. Sci. Rep. 6, 22202 (2016)

    ADS  Google Scholar 

  38. Wu, J.L., Ji, X., Zhang, S.: Fast generations of tree-type three-dimensional entanglement via Lewis–Riesenfeld invariants and transitionless quantum driving. Sci. Rep. 6, 33669 (2016)

    ADS  Google Scholar 

  39. Zhang, C.L., Luo, C.L., Liu, W.W.: Fast implementation of four-dimensional entangled state via transitionless quantum driving. Opt. Commun. 427, 497 (2018)

    ADS  Google Scholar 

  40. Zhang, C.L., Liu, W.W.: Fast implementation of quantum phase gates and creation of cluster states via transitionless quantum driving. Int. J Theor. Phys. 57, 2373 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, F.Y., Li, W.L., Yan, W.B., Xia, Y.: Speeding up adiabatic state conversion in optomechanical systems. J Phys. B At. Mol. Opt. Phys. 52, 115501 (2019)

    ADS  Google Scholar 

  42. Chen, Y.H., Wu, Q.C., Huang, B.H., Song, J., Xia, Y.: Arbitrary quantum state engineering in three-state systems via Counterdiabatic driving. Sci. Rep. 6, 38484 (2016)

    ADS  Google Scholar 

  43. Chen, Y.H., Shi, Z.C., Song, J., Xia, Y., Zheng, S.B.: Optimal shortcut approach based on an easily obtained intermediate Hamiltonian. Phys. Rev. A 95, 062319 (2017)

    ADS  Google Scholar 

  44. Kang, Y.H., Chen, Y.H., Wu, Q.C., Huang, B.H., Xia, Y., Song, J.: Reverse engineering of a Hamiltonian by designing the evolution operators. Sci. Rep. 6, 30151 (2016)

    ADS  Google Scholar 

  45. Kang, Y.H., Chen, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Complete Bell-state analysis for superconducting-quantum-interference-device qubits with a transitionless tracking algorithm. Phys. Rev. A 96, 022304 (2017)

    ADS  Google Scholar 

  46. Zheng, R.H., Kang, Y.H., Shi, Z.C., Xia, Y.: Complete and nondestructive atomic Bell-State analysis assisted by inverse engineering. Ann. Phys. (Berlin) 530, 1800133 (2018)

    ADS  MathSciNet  Google Scholar 

  47. Shan, W.J., Zhang, X.P., Wang, W.Q., Lin, M.: Fast and robust generation of singlet state via shortcuts to adiabatic passage. Quantum Inf. Process. 18, 22 (2019)

    ADS  MATH  Google Scholar 

  48. Yu, W.R., Ji, X.: Fast preparing W state via a chosen path shortcut in circuit QED. Quantum Inf. Process. 18, 247 (2019)

    ADS  MathSciNet  Google Scholar 

  49. Steck, D.A.: Rubidium 87 D line data. http://steck.us/alkalidata

  50. Mundt, A.B., Kreuter, A., Becher, C., Leibfried, D., Eschner, J., Schmidt, K.F., Blatt, R.: Coupling a single atomic quantum bit to a high finesse optical cavity. Phys. Rev. Lett. 89, 103001 (2002)

    ADS  Google Scholar 

  51. Spillane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)

    ADS  Google Scholar 

  52. Buck, J.R., Kimble, H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67, 033806 (2003)

    ADS  Google Scholar 

  53. Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Strongly correlated polaritons in a two-dimensional array of cavities. Nat. Phys. 2, 849 (2006)

    Google Scholar 

  54. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)

    Google Scholar 

  55. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    ADS  Google Scholar 

  56. Wendin, G.: Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017)

    ADS  MathSciNet  Google Scholar 

  57. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature (London) 474, 589 (2011)

    ADS  Google Scholar 

  58. Yamamoto, T., Inomata, K., Koshino, K., Billangeon, P.M., Nakamura, Y., Tsai, J.S.: Superconducting flux qubit capacitively coupled to an LC resonator. New J. Phys. 16, 015017 (2014)

    ADS  Google Scholar 

  59. Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., García-Ripoll, J.J., Zueco, D., Hummer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772 (2010)

    Google Scholar 

  60. Peropadre, B., Forn-Díaz, P., Solano, E., García-Ripoll, J.J.: Switchable Ultrastrong Coupling in Circuit QED. Phys. Rev. Lett. 105, 023601 (2010)

    ADS  Google Scholar 

  61. Yuan, X., Liu, K., Xu, Y., Wang, W.T., Ma, Y.W., Zhang, F., Yan, Z.P., Luyan Sun, L.Y., Ma, X.F.: Experimental quantum randomness processing using superconducting qubits. Phys. Rev. Lett. 117, 010502 (2016)

    ADS  Google Scholar 

  62. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Vepsalainen, A., Danilin, S., Paraoanu, G.S.: Superadiabatic population transfer in a three-level superconducting circuit. Sci. Adv. 5, eaau5999 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants Nos. 61275215 and 11674059, the Natural Science Foundation of Fujian Province of China under Grants Nos. 2016J01009 and 2016J01008, and the Educational Committee of Fujian Province of China under Grants No. JAT190978.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ling Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CL., Liu, WW. & Lin, XM. One-step implementation of a robust Fredkin gate based on path engineering. Quantum Inf Process 19, 265 (2020). https://doi.org/10.1007/s11128-020-02767-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02767-6

Keywords