Skip to main content
Log in

Quantum algorithm for Help-Training semi-supervised support vector machine

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Semi-supervised support vector machine (\(S^3VM\)) is a popular strategy for many machine learning tasks due to the expensiveness of getting enough labeled data. In this paper, we propose a quantum Help-Training \(S^3VM\) and design a quantum Parzen window model to select \(n_1+n_2\) unlabeled data from l labeled and n unlabeled data set in each iteration, the time complexity is \(O(\tau \sqrt{nn_1}+\tau \sqrt{nn_2}+\tau \sqrt{n})\) for \(\tau \) iterations, which exhibits a quadratic speed-up over classical algorithm, we adopt quantum linear system to build Lagrangian multipliers with accuracy \(\varepsilon \), the time complexity is \(O(\tau \kappa ^3\)\(\varepsilon ^{-3} \hbox {polylog}(N(n+l)))\), where condition number is \(\kappa \) and feature dimension is N, it is exponentially faster than classical \(S^3VM\) algorithm. Our scheme has two significant merits, (i) we provide the first quantum method for semi-supervised learning, which uses multiple unlabeled data with quantum superposition to predict Lagrangian multipliers at the same time, (ii) quantum matrix decomposition method avoids building matrices of different dimensions in one iteration; specially, this work provides inspiration to explore the potential quantum machine learning applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Narayanan, A., Menneer, T.: Quantum artificial neural network architectures and components. Inf. Sci. 128(3–4), 231 (2000)

    Article  MathSciNet  Google Scholar 

  2. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  3. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. lett. 100(16), 160501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Phys. Rev. A 78(5), 052310 (2008)

    Article  ADS  Google Scholar 

  5. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning, arXiv:1307.0411 (2013)

  7. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631 (2014)

    Article  Google Scholar 

  8. Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18(7), 073011 (2016)

    Article  ADS  Google Scholar 

  9. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit, arXiv:1703.10793 (2017)

  10. Wossnig, L., Zhao, Z., Prakash, A.: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120(5), 050502 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Yu, C.H., Gao, F., Wen, Q.: An improved quantum algorithm for ridge regression. IEEE Trans. Knowl, Data Eng (2019). https://doi.org/10.1109/TKDE.2019.2937491

  12. Wang, G.: Quantum algorithm for linear regression. Phys. Rev. A 96(1), 012335 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94(2), 022342 (2016)

    Article  ADS  Google Scholar 

  14. Zhao, Z., Fitzsimons, J.K., Fitzsimons, J.F.: Quantum assisted Gaussian process regression arXiv:1512.03929 (2015)

  15. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261 (2013)

    Article  MathSciNet  Google Scholar 

  16. Otterbach, J., Manenti, R., Alidoust, N., Bestwick, A., Block, M., Bloom, B., Caldwell, S., Didier, N., Fried, E.S., Hong, S. et al.: Unsupervised machine learning on a hybrid quantum computer arXiv:1712.05771 (2017)

  17. Daskin, A.: Obtaining a linear combination of the principal components of a matrix on quantum computers. Quantum Inf. Process. 15(10), 4013 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Rozema, L.A., Mahler, D.H., Hayat, A., Turner, P.S., Steinberg, A.M.: Quantum data compression of a qubit ensemble. Phys. Rev. Lett. 113(16), 160504 (2014)

    Article  ADS  Google Scholar 

  19. Yang, Y., Chiribella, G., Hayashi, M.: Optimal compression for identically prepared qubit states. Phys. Rev. Lett. 117(9), 090502 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yang, Y., Chiribella, G., Ebler, D.: Efficient quantum compression for ensembles of identically prepared mixed states. Phys. Rev. Lett. 116(8), 080501 (2016)

    Article  ADS  Google Scholar 

  21. Chai, G., Cao, Z., Liu, W., Wang, S., Huang, P., Zeng, G.: Parameter estimation of atmospheric continuous-variable quantum key distribution. Phys. Rev. A 99(3), 032326 (2019)

    Article  ADS  Google Scholar 

  22. Kerenidis, I., Prakash, A.: Quantum gradient descent for linear systems and least squares. Phys. Rev. A 101(2), 022316 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017)

    Article  ADS  Google Scholar 

  24. Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81(7), 074001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Cao, Y., Daskin, A., Frankel, S., Kais, S.: Quantum circuit design for solving linear systems of equations. Mol. Phys. 110(15–16), 1675 (2012)

    Article  ADS  Google Scholar 

  26. Pan, J., Cao, Y., Yao, X., Li, Z., Ju, C., Chen, H., Peng, X., Kais, S., Du, J.: Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A 89(2), 022313 (2014)

    Article  ADS  Google Scholar 

  27. Barz, S., Kassal, I., Ringbauer, M., Lipp, Y.O., Dakic, B., Aspuru-Guzik, A., Walther, P.: Solving systems of linear equations on a quantum computer, arXiv:1302.1210 (2013)

  28. Zhaokai, L., Xiaomei, L., Nanyang, X. et al.: Experimental realization of quantum artificial intelligence, arXiv:1410.1054 (2014)

  29. Anguita, D., Ridella, S., Rivieccio, F., Zunino, R.: Quantum optimization for training support vector machines. Neural Netw. 16(5–6), 763 (2003)

    Article  Google Scholar 

  30. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  Google Scholar 

  31. Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114(14), 140504 (2015)

    Article  ADS  Google Scholar 

  32. Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Phys. Rev. A 96(3), 032301 (2017)

    Article  ADS  Google Scholar 

  33. Adankon, M.M., Cheriet, M., Biem, A.: Semisupervised least squares support vector machine. IEEE Trans. Neural Netw. 20(12), 1858 (2009)

    Article  Google Scholar 

  34. Adankon, M.M., Cheriet, M.: Help-training for semi-supervised support vector machines. Pattern Recognit. 44(9), 2220 (2011)

    Article  Google Scholar 

  35. Kerenidis, I., Prakash, A.: Quantum recommendation systems, arXiv:1603.08675 (2016)

  36. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53 (2002)

    Article  MathSciNet  Google Scholar 

  37. Wiebe, N., Kapoor, A., Svore, K.: Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning, arXiv:1401.2142 (2014)

  38. Durr, C., Hoyer, P.: A quantum algorithm for finding the minimum, arXiv:quant-ph/9607014 (1996)

  39. Yu, C.H., Gao, F., Lin, S., Wang, J.: Quantum data compression by principal component analysis. Quantum Inf. Process. 18(8), 249 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant U1636106, the Natural Science Foundation of Beijing under Grant 4182006, and the China Postdoctoral Science Foundation under Grant 2019M650020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (Grant Nos. U1636106, 61472048), the China Postdoctoral Science Foundation under Grant 2019M650020 and the Fund of the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Li, J., Chen, X. et al. Quantum algorithm for Help-Training semi-supervised support vector machine. Quantum Inf Process 19, 278 (2020). https://doi.org/10.1007/s11128-020-02770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02770-x

Keywords

Navigation