Abstract
We use multipartite entanglement and trace distance to detect the quantum phase transitions of the extended one-dimensional compass spin-chain model by applying the density matrix renormalization group method which is represented by the matrix product state. It is shown that singular behaviors of the first-order derivative of the multipartite entanglement and trace distance occur at the critical point of the system. The scaling behaviors of trace distance and multipartite entanglement are also discussed, and we show that the universal finite-size scaling law is valid for the multipartite entanglement and trace distance around the critical point. Moreover, we explore the quantum coherence for this model and find that the first-order derivative of the quantum coherence also displays discontinuity and exhibits singular critical behaviors that are the same as the trace distance and multipartite entanglement.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008). https://doi.org/10.1103/RevModPhys.80.517
Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004). https://doi.org/10.1103/PhysRevLett.93.250404
Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)
Gu, S.J., Lin, H.Q., Li, Y.Q.: Entanglement, quantum phase transition, and scaling in the \(XXZ\) chain. Phys. Rev. A 68, 042330 (2003). https://doi.org/10.1103/PhysRevA.68.042330
Chen, J.J., Cui, J., Zhang, Y.R., Fan, H.: Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A 94, 022112 (2016). https://doi.org/10.1103/PhysRevA.94.022112
Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005). https://doi.org/10.1103/PhysRevA.71.062310
Gu, S.J.: Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24(23), 4371–4458 (2010)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996). https://doi.org/10.1103/PhysRevA.53.2046
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998). https://doi.org/10.1103/PhysRevLett.80.2245
Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006). https://doi.org/10.1103/PhysRevLett.96.220503
Bai, Y.K., Xu, Y.F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113, 100503 (2014). https://doi.org/10.1103/PhysRevLett.113.100503
Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009). https://doi.org/10.1103/PhysRevLett.103.210401
Smirne, A., Breuer, H.P., Piilo, J., Vacchini, B.: Initial correlations in open-systems dynamics: the Jaynes–Cummings model. Phys. Rev. A 82, 062114 (2010). https://doi.org/10.1103/PhysRevA.82.062114
Luo, D.W., Xu, J.B.: Trace distance and scaling behavior of a coupled cavity lattice at finite temperature. Phys. Rev. A 87, 013801 (2013). https://doi.org/10.1103/PhysRevA.87.013801
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mancal, T., Cheng, Y.C., Blankenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446(7137), 782–786 (2007). https://doi.org/10.1038/nature05678
Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463(7281), 644–647 (2010). https://doi.org/10.1038/nature08811
Sachdev, S.: Quantum phase transitions. In: Handbook of Magnetism and Advanced Magnetic Mate rials. Wiley Online Library (2007). https://doi.org/10.1002/9780470022184.hmm108
Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016). https://doi.org/10.1103/PhysRevLett.116.150504
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014). https://doi.org/10.1103/PhysRevLett.113.140401
White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345–10356 (1993). https://doi.org/10.1103/PhysRevB.48.10345
White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992). https://doi.org/10.1103/PhysRevLett.69.2863
Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975). https://doi.org/10.1103/RevModPhys.47.773
Vidal, G.: Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004). https://doi.org/10.1103/PhysRevLett.93.040502
Schollwöck, U.: The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005). https://doi.org/10.1103/RevModPhys.77.259
He, Y.C., Chen, Y.: Distinct spin liquids and their transitions in spin-1/2 \(xxz\) kagome antiferromagnets. Phys. Rev. Lett. 114, 037201 (2015). https://doi.org/10.1103/PhysRevLett.114.037201
Schollwöck, U.: The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326(1), 96–192 (2011). https://doi.org/10.1016/j.aop.2010.09.012
Jafari, R.: Quantum phase transition in the one-dimensional extended quantum compass model in a transverse field. Phys. Rev. B 84, 035112 (2011). https://doi.org/10.1103/PhysRevB.84.035112
Jackeli, G., Khaliullin, G.: Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009). https://doi.org/10.1103/PhysRevLett.102.017205
Milman, P., Maineult, W., Guibal, S., Guidoni, L., Douçot, B., Ioffe, L., Coudreau, T.: Topologically decoherence-protected qubits with trapped ions. Phys. Rev. Lett. 99, 020503 (2007). https://doi.org/10.1103/PhysRevLett.99.020503
Douçotot, B., Feigel’man, M.V., Ioffe, L.B., Ioselevich, A.S.: Protected qubits and Chern-Simons theories in Josephson junction arrays. Phys. Rev. B 71, 024505 (2005). https://doi.org/10.1103/PhysRevB.71.024505
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000). https://doi.org/10.1103/PhysRevA.61.052306
Bai, Y.K., Yang, D., Wang, Z.D.: Multipartite quantum correlation and entanglement in four-qubit pure states. Phys. Rev. A 76, 022336 (2007). https://doi.org/10.1103/PhysRevA.76.022336
Liu, G.H., Li, W., You, W.L., Tian, G.S., Su, G.: Matrix product state and quantum phase transitions in the one-dimensional extended quantum compass model. Phys. Rev. B 85, 184422 (2012). https://doi.org/10.1103/PhysRevB.85.184422
Chitambar, E., Hsieh, M.H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016). https://doi.org/10.1103/PhysRevLett.117.020402
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015). https://doi.org/10.1103/PhysRevLett.115.020403
Cui, J., Cao, J.P., Fan, H.: Quantum-information approach to the quantum phase transition in the Kitaev honeycomb model. Phys. Rev. A 82, 022319 (2010). https://doi.org/10.1103/PhysRevA.82.022319
Acknowledgements
This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11975198) and the Fundamental Research Funds for the Central Universities (Grant No. 2020FZA3005 and 2019FZA3005).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, Q., Zhang, GQ. & Xu, JB. Quantum phase transitions and scaling behaviors of extended 1D compass spin-chain model. Quantum Inf Process 19, 275 (2020). https://doi.org/10.1007/s11128-020-02780-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02780-9