Skip to main content
Log in

Enhancing entanglement of assistance using weak measurement and quantum measurement reversal in correlated amplitude damping channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entanglement of assistance from multipartite to fewer partites (e.g., bipartite) entangled state via measurements is an important way for generating entanglement. Here, we study the dynamics of entanglement of assistance from a tripartite W-like state to a bipartite Bell-like state under correlated amplitude damping channel using weak measurement and quantum measurement reversal. Our results show that the correlation between environmental noises plays a positive role in enhancing the entanglement of assistance, and in particular, it also works very well for very large decoherence strength of channel. More importantly, we find that an almost maximal two-qubit entangled state in the total region of decoherence strength can be obtained from the originally W-like state with a better success probability. The proposed scheme provides an active way in combating the amplitude damping noises, which may have potential applications in quantum communication and distributed quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)

    ADS  Google Scholar 

  3. Arshed, N., Toor, A.H.: Entanglement-assisted capacities of time-correlated amplitude-damping channel (2013). arxiv:1307.5403

  4. Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)

    ADS  Google Scholar 

  5. D’prime Arrigo, A., Benenti, G., Falci, G., Macchiavello, C.: Classical and quantum capacities of a fully correlated amplitude damping channel. Phys. Rev. A 88, 042337 (2013)

    ADS  Google Scholar 

  6. Xiao, X., Yao, Y., Xie, Y.M., Wang, X.H., Li, Y.L.: Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal. Quantum. Inf. Process 15, 3881 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Huang, Z., Zhang, C.: Protecting quantum correlation from correlated amplitude damping Channel. Braz. J. Phys. 47, 400 (2017)

    ADS  Google Scholar 

  8. Li, Y.L., Zu, C.J., Wei, D.M.: Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal. Quantum. Inf. Process. 18, 2 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Li, Y.L., Wei, D.M., Zu, C.J., Xiao, X.: Enhanced superdense coding over correlated amplitude damping channel. Entropy 21, 598 (2019)

    ADS  MathSciNet  Google Scholar 

  10. Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301(R) (2002)

    ADS  Google Scholar 

  11. D’prime Arrigo, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. New J. Phys. 9, 310 (2007)

    ADS  Google Scholar 

  12. Plenio, M.B., Virmani, S.: Spin chains and channels with memory. Phys. Rev. Lett. 99, 120504 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Addis, C., Karpat, G., Macchiavello, C., Maniscalco, S.: Dynamical memory effects in correlated quantum channels. Phys. Rev. A 94, 032121 (2016)

    ADS  Google Scholar 

  14. Hu, M.L., Zhou, W.: Enhancing two-qubit quantum coherence in a correlated dephasing channel. Laser Phys. Lett. 16, 045201 (2019)

    ADS  Google Scholar 

  15. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    ADS  Google Scholar 

  16. Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    ADS  Google Scholar 

  17. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)

    ADS  Google Scholar 

  18. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. Lett. 81, 040103(R) (2010)

    ADS  Google Scholar 

  19. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    ADS  Google Scholar 

  20. Paraoanu, G.S.: Partial measurements and the realization of quantum-mechanical counterfactuals. Found. Phys. 41, 1214 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    ADS  Google Scholar 

  22. Sun, Q.Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    ADS  Google Scholar 

  23. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Google Scholar 

  24. Man, Z.X., Xia, Y.J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)

    ADS  Google Scholar 

  25. Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    ADS  Google Scholar 

  26. Yao, C., Ma, Z.H., Chen, Z.H., Serafini, A.: Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal. Phys. Rev. A 86, 022312 (2012)

    ADS  Google Scholar 

  27. Li, Y.L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  28. He, Z., Yao, C., Zou, J.: Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal. Phys. Rev. A 88, 044304 (2013)

    ADS  Google Scholar 

  29. Li, Y.L., Huang, J., Xu, Z., Xiao, X.: Enhancing the quantum state transfer between two atoms in separate cavities via weak measurement and its reversal. Quantum Inf. Process. 16, 258 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    ADS  Google Scholar 

  31. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 80, 2493 (1998)

    Google Scholar 

  32. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell\(^{\prime }\)s theorem. Phys. Rev. Lett. 68, 557 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Unlocking hidden entanglement with classical information 1998 Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MATH  Google Scholar 

  34. Gour, G., Meyer, D.A., Sanders, B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)

    ADS  Google Scholar 

  35. Cohen, O.: Unlocking hidden entanglement with classical information. Phys. Rev. Lett. 80, 2493 (1998)

    ADS  Google Scholar 

  36. DiVincenzo, D.P., Fuchs, C.A., Mabuchi, H.A., Smolin, J. A., Thapliyal, A., Uhlmann, A.: The Entanglement of Assistance, Lecture Notes in Computer Science, Vol. 1509, pp 247–257. Springer, Berlin (1999)

  37. Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    ADS  Google Scholar 

  38. Hughston, L.P., Jozsa, R., Wootters, W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183, 14 (1993)

    ADS  MathSciNet  Google Scholar 

  39. Laustsen, T., Verstraete, F., van Enk, S.J.: Local vs. joint measurements for the entanglement of assistance. Quantum Inf. Comput. 3, 64 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Yu, C.S., Song, H.S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77, 032329 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Li, Z.G., Zhao, M.J., Fei, S.M., Liu, W.M.: Evolution equation for entanglement of assistance. Phys. Rev. A 81, 042312 (2010)

    ADS  Google Scholar 

  42. Chi, D.P., Jeong, K., Kim, T., Lee, K., Lee, S.: Concurrence of assistance and mermin inequality on three-qubit pure states. Phys. Rev. A 81, 044302 (2010)

    ADS  Google Scholar 

  43. Song, W., Yang, M., Zhao, J.L., Li, D.C., Cao, Z.L.: Polygamy relation for the Rnyi-\(\alpha \) entanglement of assistance in multi-qubit systems. Quantum. Inf. Process. 26, 19 (2019)

    Google Scholar 

  44. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    ADS  MATH  Google Scholar 

  45. Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental Realization of a Three-Qubit Entangled W State. Phys. Rev. Lett. 92, 077901 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by China Postdoctoral Science Foundation (Grant No. 2017M622582), the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ4443), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 19A339), Applied Characteristic Disciplines in Hunan Province-Electronic Science and Technology, and Hunan Province Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zeng, HS. Enhancing entanglement of assistance using weak measurement and quantum measurement reversal in correlated amplitude damping channel. Quantum Inf Process 19, 299 (2020). https://doi.org/10.1007/s11128-020-02791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02791-6

Keywords

Navigation