Skip to main content
Log in

Dissipative generation of steady-state entanglement of two separated SiV\(^{-}\) centers coupled to photonic crystal cavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an efficient scheme for the dissipative generation of steady-state entanglement of two negatively charged silicon-vacancy (SiV \(^{-}\)) centers, which are coupled to two separated photonic crystal cavities, respectively. With the external driving fields to tailor the desired interaction between the Zeeman-split lower orbital branches of the ground states of the SiV\(^{-}\) centers and the cavity fields, we show that the heavily damped cavities can induce an effective quantum reservoir coupled to the two SiV\(^{-}\) centers. Based on a form of quantum reservoir engineering, the two SiV\(^{-}\) centers can be cooled down to an entangled state at stationary state. Our scheme has the distinct feature that the decay of the cavities as resource is utilized for producing the steady-state entanglement, which does not need to exactly prepare the initial state of the system. The present work may open up promising perspectives for realizing quantum networks and quantum information processing with solid-state SiV\(^{-}\) centers in nanophotonic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)

    ADS  Google Scholar 

  3. Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015)

    ADS  Google Scholar 

  4. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    ADS  Google Scholar 

  5. Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atatüre, M., Gulde, S., Fält, S., Hu, E.L., Imamoğlu, A.: Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)

    ADS  Google Scholar 

  6. Carter, S.G., Sweeney, T.M., Kim, M., Kim, C.S., Solenov, D., Economou, S.E., Reinecke, T.L., Yang, L., Bracker, A.S., Gammon, D.: Quantum control of a spin qubit coupled to a photonic crystal cavity. Nat. Photonics 7, 329–334 (2013)

    ADS  Google Scholar 

  7. Bai, C.H., Wang, D.Y., Hu, S., Cui, W.X., Jiang, X.X., Wang, H.F.: Scheme for implementing multitarget qubit controlled-not gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Inf. Process. 15, 1485–1498 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Chang, C., Lanco, L., Citrin, D.: Quantum stabilization of microcavity excitation in a coupled microcavity-half-cavity system. Phys. Rev. B 101, 024305 (2020)

    ADS  Google Scholar 

  9. Borjans, F., Croot, X., Mi, X., Gullans, M., Petta, J.: Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2020)

    ADS  Google Scholar 

  10. Faraon, A., Santori, C., Huang, Z., Acosta, V.M., Beausoleil, R.G.: Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012)

    ADS  Google Scholar 

  11. Li, P.B., Gao, S.Y., Li, H.R., Ma, S.L., Li, F.L.: Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers. Phys. Rev. A 85, 042306 (2012)

    ADS  Google Scholar 

  12. Park, Y.S., Cook, A.K., Wang, H.: Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006)

    ADS  Google Scholar 

  13. Yu, X.C., Liu, Y.C., Yan, M.Y., Jin, W.L., Xiao, Y.F.: Coupling of diamond nanocrystals to a high-\(q\) whispering-gallery microresonator. Phys. Rev. A 86, 043833 (2012)

    ADS  Google Scholar 

  14. Hong, F.Y., Fu, J.L., Wu, Y., Zhu, Z.Y.: Room-temperature spin-photon interface for quantum networks. Quantum Inf. Process 16, 43 (2017)

    ADS  MATH  Google Scholar 

  15. Lodahl, P., Mahmoodian, S., Stobbe, S.: Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015)

    ADS  MathSciNet  Google Scholar 

  16. Laucht, A., Villas-Bôas, J.M., Stobbe, S., Hauke, N., Hofbauer, F., Böhm, G., Lodahl, P., Amann, M.C., Kaniber, M., Finley, J.J.: Mutual coupling of two semiconductor quantum dots via an optical nanocavity. Phys. Rev. B 82, 075305 (2010)

    ADS  Google Scholar 

  17. Press, D., Greve, K.D., McMahon, P.L., Ladd, T.D., Friess, B., Schneider, C., Kamp, M., Höfling, S., Forchel, A., Yamamoto, Y.: Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010)

    ADS  Google Scholar 

  18. Balasubramanian, G., et al.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009)

    ADS  Google Scholar 

  19. Bernien, H., et al.: Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013)

    ADS  Google Scholar 

  20. Shi, F., Rong, X., Xu, N., Wang, Y., Wu, J., Chong, B., Peng, X., Kniepert, J., Schoenfeld, R.S., Harneit, W., Feng, M., Du, J.: Room-temperature implementation of the deutsch-jozsa algorithm with a single electronic spin in diamond. Phys. Rev. Lett. 105, 040504 (2010)

    ADS  Google Scholar 

  21. Evans, R.E., Sipahigil, A., Sukachev, D.D., Zibrov, A.S., Lukin, M.D.: Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation. Phys. Rev. Appl. 5, 044010 (2016)

    ADS  Google Scholar 

  22. Sohn, Y.I., Meesala, S., Pingault, B., Atikian, H.A., Holzgrafe, J., Gündoğan, M., Stavrakas, C., Stanley, M.J., Sipahigil, A., Choi, J., Zhang, M., Pacheco, J.L., Abraham, J., Bielejec, E., Lukin, M.D., Atatüre, M., Lončar, M.: Controlling the coherence of a diamond spin qubit through its strain environment. Nat. Commun. 9, 2012 (2018)

    ADS  Google Scholar 

  23. Weinzetl, C., Görlitz, J., Becker, J.N., Walmsley, I.A., Poem, E., Nunn, J., Becher, C.: Coherent control and wave mixing in an ensemble of silicon-vacancy centers in diamond. Phys. Rev. Lett. 122, 063601 (2019)

    ADS  Google Scholar 

  24. Sun, S., Zhang, J.L., Fischer, K.A., Burek, M.J., Dory, C., Lagoudakis, K.G., Tzeng, Y.K., Radulaski, M., Kelaita, Y., Safavi-Naeini, A., Shen, Z.X., Melosh, N.A., Chu, S., Lončar, J.: Cavity-enhanced raman emission from a single color center in a solid. Phys. Rev. Lett. 121, 083601 (2018)

    ADS  Google Scholar 

  25. Maity, S., et al.: Coherent acoustic control of a single silicon vacancy spin in diamond. Nat. Commun. 11, 193 (2020)

    ADS  Google Scholar 

  26. Rogers, L.J., Jahnke, K.D., Metsch, M.H., Sipahigil, A., Binder, J.M., Teraji, T., Sumiya, H., Isoya, J., Lukin, M.D., Hemmer, P., Jelezko, F.: All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263602 (2014)

    ADS  Google Scholar 

  27. Becker, J.N., Pingault, B., Groß, D., Gündoğan, M., Kukharchyk, N., Markham, M., Edmonds, A., Atatüre, M., Bushev, P., Becher, C.: All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures. Phys. Rev. Lett. 120, 053603 (2018)

    ADS  Google Scholar 

  28. Pingault, B., Jarausch, D.D., Hepp, C., Klintberg, L., Becker, J.N., Markham, M., Becher, C., Atatüre, M.: Coherent control of the silicon-vacancy spin in diamond. Nat. Commun. 8, 15579 (2017)

    ADS  Google Scholar 

  29. Evans, R.E., et al.: Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018)

    ADS  Google Scholar 

  30. Sipahigil, A., et al.: An integrated diamond nanophotonics platform for quantum optical networks. Science 354, 847–850 (2016)

    ADS  Google Scholar 

  31. Kastoryano, M.J., Reiter, F., Sørensen, A.S.: Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011)

    ADS  Google Scholar 

  32. Wu, Q.C., Ji, X.: Generation of steady three-and four-dimensional entangled states via quantum-jump-based feedback. Quantum Inf. Process. 12, 3167–3178 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Shao, X.Q., Wu, J.H., Yi, X.X., Long, G.L.: Dissipative preparation of steady greenberger-horne-zeilinger states for rydberg atoms with quantum zeno dynamics. Phys. Rev. A 96, 062315 (2017)

    ADS  Google Scholar 

  34. Su, S.L., Shao, X.Q., Wang, H.F., Zhang, S.: Scheme for entanglement generation in an atom-cavity system via dissipation. Phys. Rev. A 90, 054302 (2014)

    ADS  Google Scholar 

  35. Rao, D.D.B., Mølmer, K.: Deterministic entanglement of Rydberg ensembles by engineered dissipation. Phys. Rev. A 90, 062319 (2014)

    ADS  Google Scholar 

  36. Su, S.L., Tian, Y.Z., Shen, H.Z., Zang, H.P., Liang, E., Zhang, S.: Applications of the modified Rydberg antiblockade regime with simultaneous driving. Phys. Rev. A 96, 042335 (2017)

    ADS  Google Scholar 

  37. Jin, Z., Su, S.L., Zhang, S.: Preparation of a steady entangled state of two nitrogen-vacancy centers by simultaneouly utilizing two dissipative factors. Phys. Rev. A 100, 052332 (2019)

    ADS  Google Scholar 

  38. Riedrich-Möller, J., Arend, C., Pauly, C., Mücklich, F., Fischer, M., Gsell, S., Schreck, M., Becher, C.: Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett. 14, 5281–5287 (2014)

    ADS  Google Scholar 

  39. Wan, N.H., Mouradian, S., Englund, D.: Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond. Appl. Phys. Lett. 112, 141102 (2018)

    ADS  Google Scholar 

  40. Englund, D., Shields, B., Rivoire, K., Hatami, F., Vuckovic, J., Park, H., Lukin, M.D.: Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano lett. 10, 3922–3926 (2010)

    ADS  Google Scholar 

  41. Chatzopoulos, I., Martini, F., Cernansky, R., Politi, A.: High-Q/V photonic crystal cavities and QED analysis in 3C-SiC. ACS Photonics 6, 1826–1831 (2019)

    Google Scholar 

  42. Asano, T., Ochi, Y., Takahashi, Y., Kishimoto, K., Noda, S.: Photonic crystal nanocavity with a q factor exceeding eleven million. Opt. Express 25, 1769 (2017)

    ADS  Google Scholar 

  43. Riedrich-Möller, J., Kipfstuhl, L., Hepp, C., Neu, E., Pauly, C., Mücklich, F., Baur, A., Wandt, M., Wolff, S., Fischer, M., Gsell, S., Schreck, M., Becher, C.: One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotechnol. 7, 69–74 (2011)

    ADS  Google Scholar 

  44. Burek, M.J., Chu, Y., Liddy, M.S.Z., Patel, P., Rochman, J., Meesala, S., Hong, W., Quan, Q., Lukin, M.D., Lončar, M.: High quality-factor optical nanocavities in bulk single-crystal diamond. Nat. Commun. 5, 5718 (2014)

    ADS  Google Scholar 

  45. Mouradian, S., Wan, N.H., Schröder, T., Englund, D.: Rectangular photonic crystal nanobeam cavities in bulk diamond. Appl. Phys. Lett. 111, 021103 (2017)

    ADS  Google Scholar 

  46. Zhang, J.L., Sun, S., Burek, M.J., Dory, C., Tzeng, Y.K., Fischer, K.A., Kelaita, Y., Lagoudakis, K.G., Radulaski, M., Shen, Z.X., Melosh, N.A., Chu, S., Lončar, M., Vučković, J.: Strongly cavity-enhanced spontaneous emission from silicon-vacancy centers in diamond. Nano Lett. 18, 1360–1365 (2018)

    ADS  Google Scholar 

  47. Na, N., Utsunomiya, S., Tian, L., Yamamoto, Y.: Strongly correlated polaritons in a two-dimensional array of photonic crystal microcavities. Phys. Rev. A 77, 031803 (2008)

    ADS  Google Scholar 

  48. Shen, L.T., Chen, X.Y., Yang, Z.B., Wu, H.Z., Zheng, S.B.: Steady-state entanglement for distant atoms by dissipation in coupled cavities. Phys. Rev. A 84, 064302 (2011)

    ADS  Google Scholar 

  49. Notomi, M., Kuramochi, E., Tanabe, T.: Large-scale arrays of ultrahigh-q coupled nanocavities. Nat. Photonics 2, 741 (2008)

    ADS  Google Scholar 

  50. Sato, Y., Tanaka, Y., Upham, J., Takahashi, Y., Asano, T., Noda, S.: Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photonics 6, 56 (2012)

    ADS  Google Scholar 

  51. Goss, J.P., Briddon, P.R., Shaw, M.J.: Density functional simulations of silicon-containing point defects in diamond. Phys. Rev. B 76, 075204 (2007)

    ADS  Google Scholar 

  52. Pingault, B., Becker, J.N., Schulte, C.H.H., Arend, C., Hepp, C., Godde, T., Tartakovskii, A.I., Markham, M., Becher, C., Atatüre, M.: All-optical formation of coherent dark states of silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263601 (2014)

    ADS  Google Scholar 

  53. Zhou, Y., Rasmita, A., Li, K., Xiong, Q., Aharonovich, I., Gao, W.B.: Coherent control of a strongly driven silicon vacancy optical transition in diamond. Nat. Commun. 8, 14451 (2017)

    ADS  Google Scholar 

  54. Awschalom, D.D., Hanson, R., Wrachtrup, J., Zhou, B.B.: Quantum technologies with optically interfaced solid-state spins. Nat. Photonics 12, 516–527 (2018)

    ADS  Google Scholar 

  55. Müller, T., Hepp, C., Pingault, B., Neu, E., Gsell, S., Schreck, M., Sternschulte, H., Steinmüller-Nethl, D., Becher, C., Atatüre, M.: Optical signatures of silicon-vacancy spins in diamond. Nat. Commun. 5, 3328 (2014)

    ADS  Google Scholar 

  56. Hepp, C., Müller, T., Waselowski, V., Becker, J.N., Pingault, B., Sternschulte, H., Steinmüller-Nethl, D., Gali, A., Maze, J.R., Atatüre, M., Becher, C.: Electronic structure of the silicon vacancy color center in diamond. Phys. Rev. Lett. 112, 036405 (2014)

    ADS  Google Scholar 

  57. Lemonde, M.A., Meesala, S., Sipahigil, A., Schuetz, M.J.A., Lukin, M.D., Loncar, M., Rabl, P.: Phonon networks with silicon-vacancy centers in diamond waveguides. Phys. Rev. Lett. 120, 213603 (2018)

    ADS  Google Scholar 

  58. James, D.F.V.: Quantum computation with hot and cold ions: an assessment of proposed schemes. Fortschr. Phys. 48, 823–837 (2000)

    Google Scholar 

  59. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    ADS  MATH  Google Scholar 

  60. Nguyen, C.T., Sukachev, D.D., Bhaskar, M.K., Machielse, B., Levonian, D.S., Knall, E.N., Stroganov, P., Riedinger, R., Park, H., Lončar, M., Lukin, M.D.: Quantum network nodes based on diamond qubits with an efficient nanophotonic interface. Phys. Rev. Lett. 123, 183602 (2019)

    ADS  Google Scholar 

  61. Nguyen, C.T., Sukachev, D.D., Bhaskar, M.K., Machielse, B., Levonian, D.S., Knall, E.N., Stroganov, P., Chia, C., Burek, M.J., Riedinger, R., Park, H., Lončar, M., Lukin, M.D.: An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Phys. Rev. B 100, 165428 (2019)

    ADS  Google Scholar 

  62. Metsch, M.H., Senkalla, K., Tratzmiller, B., Scheuer, J., Kern, M., Achard, J., Tallaire, A., Plenio, M.B., Siyushev, P., Jelezko, F.: Initialization and readout of nuclear spins via a negatively charged silicon-vacancy center in diamond. Phys. Rev. Lett. 122, 190503 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The work was partly supported by the National Key R & D Project (Grant No. 2016YFA0301404), the National Nature Science Foundation of China (Grant Nos. 11704306 and 11534008), and the China Postdoctoral Science Foundation (Grant No. 2016M602795)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, S., Xie, J. et al. Dissipative generation of steady-state entanglement of two separated SiV\(^{-}\) centers coupled to photonic crystal cavities. Quantum Inf Process 19, 301 (2020). https://doi.org/10.1007/s11128-020-02797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02797-0

Keywords

Navigation