Skip to main content
Log in

Entanglement fidelity and measure of entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The notion of entanglement fidelity is to measure entanglement preservation through quantum channels. Nevertheless, the amount of entanglement present in a state of a quantum system at any time is measured by quantities known as measures of entanglement. Since there are different types of measures of entanglement, one may expect an entanglement fidelity to associate with its own measure of entanglement counterpart. Here, we aim to investigate association between the so-called entanglement fidelity and some measures of entanglement, namely, entanglement of formation, concurrence and negativity. New entanglement fidelities based upon these measures of entanglement are introduced and statistically compared with the so-called previously introduced entanglement fidelity. It is shown that the entangling aspect of the so-called entanglement fidelity is neither of type entanglement of formation and concurrence nor of type negativity. The results, in addition, expose inability of the so-called entanglement fidelity for detecting, in a broad sense, entanglement preservation through quantum channels. Our analyses open up a new venue in the study of entanglement fidelity and measure of entanglement by demonstrating that each measure of entanglement solely defines its own entanglement fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that we here use the negativity defined in Ref. [8], which is twice the negativity introduced in Ref. [17].

  2. For two-qubit pure states, concurrence and negativity are the same [8].

References

  1. Barnum, H., Nielsen, M.A., Schumacher, B.: Information transmission through a noisy quantum channel. Phys. Rev. A 57, 4153 (1998)

    Article  ADS  Google Scholar 

  2. Bennet, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., DiVincenzo, D.P., Smolin, J., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  5. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, M.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Kendall, M.G., Gibbons, J.D.: Rank Correlation Methods. Charles Griffin Book Series, 5th edn. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  8. Miranowicz, A., Grudka, A.: Ordering two-qubit states with concurrence and negativity. Phys. Rev. A 70, 032326 (2004)

    Article  ADS  Google Scholar 

  9. Nielsen, M.A.: The entanglement fidelity and quantum error correction. ArXiv preprint arXiv:quant-ph/9606012 (1996)

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  11. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614 (1996)

    Article  ADS  Google Scholar 

  13. Steane, A.: Quantum computing. Rep. Prog. Phys. 61, 117 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  15. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  16. Vidal, G.: Entanglement monotones. J. Mod. Opt. 47, 355 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  18. Virmani, S., Plenio, M.B.: Ordering states with entanglement measures. Phys. Lett. A 268, 31 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  20. Xiang, Y., Xiong, S.J.: Entanglement fidelity and measurement of entanglement preserving in quantum processes. Phys. Rev. A 76(1), 014301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by Department of Applied Mathematics and Computer Science at University of Isfahan (Iran) and in part by a grant from IPM through Grant No. 98810042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Azimi Mousolou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi Mousolou, V. Entanglement fidelity and measure of entanglement. Quantum Inf Process 19, 329 (2020). https://doi.org/10.1007/s11128-020-02808-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02808-0

Keywords

Navigation