Skip to main content
Log in

The effect on (2, N, 2) Bell tests with distributed measurement dependence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Bell tests, as primitive tools to detect nonlocality in bipartite systems, rely on an assumption, i.e., measurement independence. In practice, it is difficult to ensure measurement independence. It is necessary to investigate how Bell tests are affected by relaxing measurement independence. In the simplest (2, 2, 2) CHSH Bell test which consists of two parties, two measurements per party and two possible outcomes per measurement, the results between the maximal value of CHSH correlation function and distributed measurement dependence (DMD) are given, where DMD is a general measure of relaxing measurement independence. However, in a general Bell scenario of an arbitrary number of measurements per party, i.e., (2, N, 2), pertinent results are still missing. To solve it, we establish the relations between the maximal value of (2, N, 2) Pearle–Braunstein–Caves (PBC) chain correlation function that maintains the locality and the degree of DMD, denoted as DMD-induced PBC chain inequalities. Furthermore, we show the tightness of these derived inequalities via constructing local hidden variable models that fake the upper bounds. Compared with the simplest CHSH Bell test, our derived inequalities need less amount of measurement dependence to fake the quantum prediction with N increasing, which is beneficial to analyze the security of device-independent quantum information processing tasks such as randomness expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  2. Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., Roberts, D.: Nonlocal correlations as an information-theoretic resource. Phys. Rev. A 71, 022101 (2005)

    Article  ADS  Google Scholar 

  3. Gallego, R., Würflinger, L.E., Acín, A., Navascués, M.: Operational framework for nonlocality. Phys. Rev. Lett. 109, 070401 (2012)

    Article  ADS  Google Scholar 

  4. Christensen, B.G., Liang, Y.C., Brunner, N., Gisin, N., Kwiat, P.G.: Exploring the limits of quantum nonlocality with entangled photons. Phys. Rev. X 5, 041052 (2015)

    Google Scholar 

  5. Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  6. Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)

    Article  ADS  Google Scholar 

  7. Vazirani, U., Vidick, T.: Fully device independent quantum key distribution. Commun. ACM 62(4), 133 (2019)

    Article  Google Scholar 

  8. Pironio, S., Acín, A., Massar, S., de la Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature (London) 464, 1021 (2010)

    Article  ADS  Google Scholar 

  9. Colbeck, R., Kent, A.: Private randomness expansion with untrusted devices. J. Phys. A Math. Theor. 44(9), 095305 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. Pironio, S., Massar, S.: Security of practical private randomness generation. Phys. Rev. A 87, 012336 (2013)

    Article  ADS  Google Scholar 

  11. Fehr, S., Gelles, R., Schaffner, C.: Security and composability of randomness expansion from Bell inequalities. Phys. Rev. A 87, 012335 (2013)

    Article  ADS  Google Scholar 

  12. Acín, A., Masanes, L.: Certified randomness in quantum physics. Nature 540(7632), 213 (2016)

    Article  ADS  Google Scholar 

  13. Huang, X.H., Li, D.D., Zhang, P.: Effects of measurement dependence on tilted CHSH Bell tests. Quantum Inf. Process. 17(11), 291 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bouda, J., Pawłowski, M., Pivoluska, M., Plesch, M.: Device-independent randomness extraction from an arbitrarily weak min-entropy source. Phys. Rev. A 90, 032313 (2014)

    Article  ADS  Google Scholar 

  15. Yang, T.H., Vértesi, T., Bancal, J.D., Scarani, V., Navascués, M.: Robust and versatile black-box certification of quantum devices. Phys. Rev. Lett. 113, 040401 (2014)

    Article  ADS  Google Scholar 

  16. Wu, X., Bancal, J.D., McKague, M., et al.: Device-independent parallel self-testing of two singlets. Phys. Rev. A 93(6), 062121 (2016)

    Article  ADS  Google Scholar 

  17. Kaniewski, J.: Analytic and nearly optimal self-testing bounds for the Clauser–Horne–Shimony–Holt and Mermin inequalities. Phys. Rev. Lett. 117(7), 070402 (2016)

    Article  ADS  Google Scholar 

  18. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 3 (1964)

    Article  MathSciNet  Google Scholar 

  19. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  20. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  21. Wehner, S.: Tsirelson bounds for generalized Clauser–Horne–Shimony–Holt inequalities. Phys. Rev. A 73, 022110 (2006)

    Article  ADS  Google Scholar 

  22. Dhara, C., de la Torre, G., Acín, A.: Can observed randomness be certified to be fully intrinsic? Phys. Rev. Lett. 112, 100402 (2014)

    Article  ADS  Google Scholar 

  23. Barrett, J., Gisin, N.: How much measurement independence is needed to demonstrate nonlocality? Phys. Rev. Lett. 106, 100406 (2011)

    Article  ADS  Google Scholar 

  24. Pütz, G., Rosset, D., Barnea, T.J., Liang, Y.C., Gisin, N.: Arbitrarily small amount of measurement independence is sufficient to manifest quantum nonlocality. Phys. Rev. Lett. 113, 190402 (2014)

    Article  ADS  Google Scholar 

  25. Hall, M.J.W.: Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys. Rev. Lett. 105, 250404 (2010)

    Article  ADS  Google Scholar 

  26. Hall, M.J.W.: Relaxed Bell inequalities and Kochen–Specker theorems. Phys. Rev. A 84, 022102 (2011)

    Article  ADS  Google Scholar 

  27. Thinh, L.P., Sheridan, L., Scarani, V.: Bell tests with min-entropy sources. Phys. Rev. A 87, 062121 (2013)

    Article  ADS  Google Scholar 

  28. Colbeck, R., Renner, R.: Free randomness can be amplified. Nat. Phys. 8, 450 (2012)

    Article  Google Scholar 

  29. Gallego, R., Masanes, L., De La Torre, G., Dhara, C., Aolita, L., Acín, A.: Full randomness from arbitrarily deterministic events. Nat. Commun. 4, 2654 (2013)

    Article  ADS  Google Scholar 

  30. Koh, D.E., Hall, M.J.W., Setiawan Pope, J.E., Marletto, C., Kay, A., Scarani, V., Ekert, A.: Effects of reduced measurement independence on Bell-based randomness expansion. Phys. Rev. Lett. 109, 160404 (2012)

    Article  ADS  Google Scholar 

  31. Friedman, A.S., Guth, A.H., Hall, M.J.W., Kaiser, D.I., Gallicchio, J.: Relaxed Bell inequalities with arbitrary measurement dependence for each observer. Phys. Rev. A 99, 012121 (2019)

    Article  ADS  Google Scholar 

  32. Banik, M., Gazi, M.D.R., Das, S., et al.: Optimal free will on one side in reproducing the singlet correlation. J. Phys. A Math. Theor. 45, 205301 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  33. Franson, J.D.: Bell inequality for position and time. Phys. Rev. Lett. 62, 2205 (1989)

    Article  ADS  Google Scholar 

  34. Aerts, S., Kwiat, P., Larsson, J.-A., Zukowski, M.: Two-photon Franson-type experiments and local realism. Phys. Rev. Lett. 83, 2872 (1999)

    Article  ADS  Google Scholar 

  35. Barrett, J., Colbeck, R., Kent, A.: Unconditionally secure device-independent quantum key distribution with only two devices. Phys. Rev. A 86, 062326 (2012)

    Article  ADS  Google Scholar 

  36. Li, D.D., Zhou, Y.Q., Gao, F., Li, X.H., Wen, Q.Y.: Effects of measurement dependence on generalized Clauser–Horne–Shimony–Holt Bell test in the single-run and multiple-run scenarios. Phys. Rev. A 94, 012104 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (Grant Nos. 61802023, 61701553).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In order to prove the tightness of the derived results of Theorem 2, here, without loss of generality, we discuss the case of \(N=3, \delta _A=\delta _B=1, \xi _A= \xi _B=1\), and other cases can be proved similarly.

For achieving the maximal value of PBC chain correlation function via local hidden variable model, then Eqs. (43), (44), (46) must hold “=.” Let absolute values of Eqs. (43), (44), (46) be themselves. Based on the product of definite outcomes of Alice and Bob (i.e, Table 5), then \(p(\lambda |X_{0}Y_{0})-p(\lambda |X_{0}Y_{2})\), \(p(\lambda |X_{1}Y_{1})-p(\lambda |X_{1}Y_{0})\), \(p(\lambda |X_{2}Y_{2})-p(\lambda |X_{2}Y_{1})\), \(p(\lambda |X_{1}Y_{0})-p(\lambda |X_{0}Y_{0})\) and \(p(\lambda |X_{2}Y_{1})-p(\lambda |X_{1}Y_{1})\) need to satisfy the following relations:

$$\begin{aligned}&p(\lambda |X_{0}Y_{0})-p(\lambda |X_{0}Y_{2}) = \left\{ \begin{array}{ll} \le 0,\quad \ \ \lambda =1,3,4,5,6;\\ \ge 0,\quad \ \ \lambda =2. \end{array} \right. \end{aligned}$$
(60)
$$\begin{aligned}&p(\lambda |X_{1}Y_{1})-p(\lambda |X_{1}Y_{0}) = \left\{ \begin{array}{ll} \le 0,\quad \ \ \lambda =3, 4, 5;\\ \ge 0,\quad \ \ \lambda =1, 2, 6. \end{array} \right. \end{aligned}$$
(61)
$$\begin{aligned}&p(\lambda |X_{2}Y_{2})-p(\lambda |X_{2}Y_{1}) = \left\{ \begin{array}{ll} \le 0,\quad \ \ \lambda =3;\\ \ge 0,\quad \ \ \lambda =1, 2, 4, 5, 6. \end{array} \right. \end{aligned}$$
(62)
$$\begin{aligned}&p(\lambda |X_{1}Y_{0})-p(\lambda |X_{0}Y_{0}) = \left\{ \begin{array}{ll} \le 0,\quad \ \ \lambda =3, 4, 5, 6;\\ \ge 0,\quad \ \ \lambda =1, 2. \end{array} \right. \end{aligned}$$
(63)
$$\begin{aligned}&p(\lambda |X_{2}Y_{1})-p(\lambda |X_{1}Y_{1}) = \left\{ \begin{array}{ll} \le 0,\quad \ \ \lambda =3, 4;\\ \ge 0,\quad \ \ \lambda =1, 2, 5, 6. \end{array} \right. \end{aligned}$$
(64)
Table 5 Definite outcomes \(A(X_{j}, \lambda )\) and \(B(Y_{k}, \lambda )\) of Alice’s and Bob’s measurements for given hidden variable

In order to enforce to satisfy these conditions, we parameterize the conditional probabilities in Table 6.

Table 6 Parameterization of the conditional probability \(p(\lambda |X_{j}, Y_{k})\) with constrains of (60)–(64)

When \({{\hat{M}}}_{A}=M_{A}\) and \({{\hat{M}}}_{B}=M_{B}\), the result under four-parameter description is reduced to the result under two-parameter description. If the upper bound of \(\hbox {DMD}_2\)-induced PBC chain inequality is achieved, then the values of \(f_{s} (s\in \{1,\ldots , 36\})\) which consist of \(\{p(\lambda |X_j, Y_k)\}\) are given in the following:

$$\begin{aligned}&f_1=\cdots =f_6=\frac{2-2M_{A}-3M_{B}}{12},\nonumber \\&f_7=f_{22}=f_{30}=f_{35}=\frac{3M_{A}+3M_{B}}{12},\nonumber \\&f_{11}=f_{12}=f_{17}=f_{26}=f_{27}=f_{32}=\frac{M_{B}}{12};\nonumber \\&f_{13}=f_{18}=f_{28}=f_{33}=\frac{3M_{A}-3M_{B}}{12};\nonumber \\&f_{8}=f_{9}=f_{10}=f_{14}=f_{15}=f_{16}=f_{19}=f_{20}=f_{21}\nonumber \\&\quad =f_{23}=f_{24}=f_{25}=f_{29}=f_{31}=f_{34}=f_{36}=0. \end{aligned}$$
(65)

In the case of distributed measurement dependence with four-parameter description, if \(\delta _A=\delta _B=1, \xi _A=\xi _B=1\), let \(M_{B}[X_j]\), \(M_{A}[Y_k]\) satisfy the following constraints:

$$\begin{aligned} \begin{aligned}&M_{B}[X_1]={{\hat{M}}}_{B}, M_{A}[Y_0]={{\hat{M}}}_{A},\\&M_{B}[X_0]= M_{B}, M_{A}[Y_1]=M_{A},\\&M_{B}[X_2]= M_{B}, M_{A}[Y_2]=M_{A},\\ \end{aligned} \end{aligned}$$
(66)

where \(j, k\in \{0, 1, 2\}\).

Based on the normalization of probability and the expression of \(I^\mathrm{PBC}_{N=3}\), \(I^\mathrm{PBC}_{N=3}\) is deduced as

$$\begin{aligned} I^\mathrm{PBC}_{N=3}=6-2(f_1+f_2+\cdots +f_6). \end{aligned}$$
(67)

\(I^\mathrm{PBC}_{N=3}\) is required to achieve the upper bound (i.e., \(4+{{\hat{M}}}_{A}+{{\hat{M}}}_{B}+ M_{A}+2M_{B}\) ); then, we have

$$\begin{aligned} 6-2(f_1+f_2+\cdots +f_6)=4+{{\hat{M}}}_{A}+{{\hat{M}}}_{B}+ M_{A}+2M_{B}. \end{aligned}$$
(68)

Based on the normalization of \(\{p(\lambda |X_1,Y_0)\}\), we get

$$\begin{aligned} \begin{aligned}&f_7+f_{12}+f_{13}+f_{17}+f_{18}+f_{19}+f_{22}+f_{23}+f_{27}\\&\quad =1-(f_1+\cdots +f_6).\\ \end{aligned} \end{aligned}$$
(69)

Based on the constraints of Eq. (66) and the normalization of probability, we get

$$\begin{aligned} \begin{aligned}&f_8+f_{14}+f_{32}=f_{19}+f_{23}+f_{27}=\frac{{{\hat{M}}}_{B}}{2},\\&f_9+f_{15}+f_{30}+f_{33}=f_{18}+f_{22}=\frac{M_{A}}{2},\\&f_{10}+f_{16}+f_{26}+f_{31}+f_{34}=f_{17}=\frac{M_{B}}{2},\\&f_{11}=f_{12}+f_{21}+f_{25}+f_{29}+f_{36}=\frac{M_{B}}{2},\\&f_{7}+f_{13}=f_{20}+f_{24}+f_{28}+f_{35}=\frac{{{\hat{M}}}_{A}}{2},\\&f_7-f_{11}+f_{12}+f_{13}+f_{22}-f_{26}+f_{27}+f_{28}-f_{30}+f_{32}\\&\quad +f_{33}-f_{35}=M_{A}. \end{aligned} \end{aligned}$$
(70)

Combing with Eq. (65), by solving Eq. (70) we get the values of \(f_{s} (s\in \{1,\cdots , 36\})\) in the following:

$$\begin{aligned} \begin{aligned}&f_1=\cdots =f_{6}=\frac{2-M_{A}-2M_{B}-{{\hat{M}}}_{A}-{{\hat{M}}}_{B}}{12}, f_7=\frac{{{\hat{M}}}_{A}+M_{B}}{4},\\&f_{11}=f_{12}=f_{17}=f_{26}=\frac{M_{B}}{2},\\&f_{13}=\frac{{{\hat{M}}}_{A}-M_{B}}{4}, f_{18}=f_{33}=\frac{M_{A}-M_{B}}{4},\\&f_{22}=f_{30}=\frac{M_{A}+M_{B}}{4},\\&f_{27}=f_{32}=\frac{{{\hat{M}}}_{B}}{2},\\&f_{28}=\frac{-M_{A}+M_{B}+2{{\hat{M}}}_{A}-2{{\hat{M}}}_{B}}{4},\\&f_{35}=\frac{M_{A}-M_{B}+2{{\hat{M}}}_{B}}{4},\\&f_{8}=f_{9}=f_{10}=f_{14}=f_{15}=f_{16}=f_{19}=f_{20}=f_{21}\\&\quad =f_{23}=f_{24}=f_{25}=f_{29}=f_{31}=f_{34}=f_{36}=0. \end{aligned} \end{aligned}$$
(71)

Relying on Eq. (71), each element of Table 4 is given. Hence, we complete the entities of Table 4 under conditions of \(M_A\ge M_B\), \({{\hat{M}}}_A+{{\hat{M}}}_B+M_A+2M_B\le 2\), \({{\hat{M}}}_A \ge M_B\) and \(-M_A+M_B+2{{\hat{M}}}_A -2 {{\hat{M}}}_B \ge 0\).

When \({{\hat{M}}}_A+{{\hat{M}}}_B+M_A+2M_B>2\), the calculation of the values of \(p(\lambda |X_j,Y_k)\) is similar to the case of \({{\hat{M}}}_A+{{\hat{M}}}_B+M_A+2M_B\le 2\). The difference between the case of \({{\hat{M}}}_A+{{\hat{M}}}_B+M_A+2M_B>2\) and the case of \({{\hat{M}}}_A+{{\hat{M}}}_B+M_A+2M_B\le 2\) is the relation deduction of \(\{f_s\}\) in case of \({{\hat{M}}}_A=M_A\) and \({{\hat{M}}}_B=M_B\) and calculation about \(\{f_s\}\) in case of \({{\hat{M}}}_A, M_A, {{\hat{M}}}_B, M_B\). However, the deduction methods are similar to the case of \({{\hat{M}}}_A+{{\hat{M}}}_B+M_A+2M_B\le 2\) and omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DD., Chen, LY., Cao, Y. et al. The effect on (2, N, 2) Bell tests with distributed measurement dependence. Quantum Inf Process 19, 339 (2020). https://doi.org/10.1007/s11128-020-02819-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02819-x

Keywords

Navigation