Abstract
Let p be a prime and \(q=p^r\), for an integer \(r\ge 1\). This article studies \(\lambda =(\lambda _1+u\lambda _2+v\lambda _3)\)-constacyclic codes of length n over a class of finite commutative non-chain rings \(R={\mathbb {F}}_q[u,v]/\langle u^2-\gamma u,v^2-\delta v,uv=vu=0\rangle \), where \(\gamma ,\delta \in {\mathbb {F}}_q^{*}\). First, we decompose \((\lambda _1+u\lambda _2+v\lambda _3)\)-constacyclic code into the direct sum of \(\lambda _1\)-constacyclic, \((\lambda _1+\gamma \lambda _2)\)-constacyclic and \((\lambda _1+\delta \lambda _3)\)-constacyclic codes over \({\mathbb {F}}_q\), respectively. Then, we determine the necessary and sufficient condition for these codes to contain their Euclidean duals. Further, we extend the study to \({\mathbb {F}}_qR\)-additive \(\lambda \)-constacyclic codes of length (n, m) which are R[x]-submodules of \(S_{n,m}={\mathbb {F}}_q[x]/\langle x^n-1\rangle \times R[x]/\langle x^m-\lambda \rangle \). Apart from other results, we also discuss the dual-containing separable \({\mathbb {F}}_qR\)-additive \(\lambda \)-constacyclic codes. Finally, by using the CSS construction on the Gray images of these codes, we obtain many new and better quantum codes that improve on the known existing quantum codes available in recent articles.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alkenani, A. N., Ashraf, M., Mohammad, G.: Quantum codes from the constacyclic codes over the ring \(\mathbb{F}_{q}[u_1,u_2]/\langle u_1^{2}-u_1,u_2^{2}-u_2,u_1u_2-u_2u_1\rangle \). Mathematics 8(5), 781: https://doi.org/10.3390/math8050781 (2020)
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(\mathbb{F}_q + u\mathbb{F}_q + v\mathbb{F}_q + uv\mathbb{F}_q\). Quantum Inf. Process. 15(10), 4089–4098 (2016)
Ashraf, M., Mohammad, G.: Quantum codes over \(\mathbb{F}_{p}\) from cyclic codes over \(\mathbb{F}_{p}[u, v]/\langle u^{2}-1, v^{3}-v, uv-vu\rangle \). Cryptogr. Commun. 11(2), 325–335 (2019)
Aydin, N., Abualrub, T.: Optimal quantum codes from additive skew cyclic codes. Discrete Math. Algorithms Appl. 8(3), 1650037 9 pp (2016)
Aydogdu, I., Abualrub, T.: Self-Dual Cyclic and Quantum Codes Over \(\mathbb{Z}\mathit{_2\times (\mathbb{Z}}_2+u\mathbb{Z}_2)\). Discrete Math. Algorithms Appl. 11(4), 1950041 15 pp (2019)
Aydogdu, I., Abualrub, T., Siap, I.: \(\mathbb{Z}_2\mathbb{Z}_2[u]\)-Cyclic and Constacyclic Codes. IEEE Trans. Inform. Theory. 63(8), 4883–4893 (2016)
Borges, J., Fernandez-Cordoba, C., Pujol, J., Rifa, J., Villanueva, M.: \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes: Generator matrices and duality. Designs Codes Cryptogr. 54(2), 167–179 (2010)
Bosma, W., Cannon, J.: Handbook of Magma Functions. Univ. of Sydney (1995)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inform. Theory 44, 1369–1387 (1998)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)
Delsarte, P., Levenshtein, V.I.: Association schemes and coding theory. IEEE Trans. Inform. Theory 44, 2477–2504 (1998)
Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over \(A_2\). Int. J. Quantum Inf. 13(3), 1550031 (2015)
Diao, L., Gao, J.: \(\mathbb{Z}_p\mathbb{Z}_p[u]\)-additive cyclic codes. Int. J. Inf. Coding Theory 5(1), 1–17 (2018)
Diao, L., Gao, J., Lu, J.: Some results on \(\mathbb{Z}_p\mathbb{Z}_p[v]\)-additive cyclic codes. Adv. Math. Commun. (2019). https://doi.org/10.3934/amc.2020029
Dinh, H.Q., Bag, T., Upadhyay, A.K., Ashraf, M., Mohammad, G.: Quantum codes from a class of constacyclic codes over finite commutative rings. J. Algebra Appl. (2019). https://doi.org/10.1142/S0219498821500031
Edel, Y.: Some good quantum twisted codes. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html
Gao, J., Wang, Y.: \(u\)-Constacyclic codes over \(\mathbb{F}\mathit{_p + u\mathbb{F}}_p\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17(1), 9 pp (2018)
Gao, Y., Gao, J., Fu, F.W.: On Quantum codes from cyclic codes over the ring \(\mathbb{F}_{q} +v_1\mathbb{F}_{q}+\dots +v_r\mathbb{F}_{q}\). Appl. Algebra Engrg. Comm. Comput. 30(2), 161–174 (2019)
Grassl, M., Beth, T.: On optimal quantum codes. Int. J. Quantum Inf. 2, 55–64 (2004)
Islam, H., Prakash, O., Verma, R.K.: New quantum codes from constacyclic codes over the ring \(R_{k, m}\). Adv. Math. Commun. (2020). https://doi.org/10.3934/amc.2020097
Islam, H., Prakash, O., Solé, P.: \(\mathbb{Z}_4\mathbb{Z}_4[u]\)-additive cyclic and constacyclic codes. Adv. Math. Commun. (2020). https://doi.org/10.3934/amc.2020094
Islam, H., Prakash, O.: Quantum codes from the cyclic codes over \(\mathbb{F}_{p}[u, v, w]/\langle u^2-1, v^2-1, w^2-1, uv-vu, vw-wv, wu-uw\rangle \). J. Appl. Math. Comput. 60(1–2), 625–635 (2019)
Islam, H., Prakash, O., Bhunia, D.K.: Quantum codes obtained from constacyclic codes. Internat. J. Theoret. Phys. 58(11), 3945–3951 (2019)
Islam, H., Prakash, O., Verma, R.K.: Quantum codes from the cyclic codes over \(\mathbb{F}_{p}[v, w]/\langle v^{2}-1, w^{2}-1, vw-wv\rangle \). Springer Proceedings in Mathematics & Statistics 307, 67–74 (2019). https://doi.org/10.1007/978-981-15-1157-8-6
Islam, H., Prakash, O., Verma, R.K.: A family of constacyclic codes over \(\mathbb{F}_{p^m}[v, w]/\langle v^{2}-1, w^{2}-1, vw-wv\rangle \). Int. J. Inf. Coding Theory (2020). https://doi.org/10.1504/IJICOT.2019.10026515
Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \(\mathbb{F}_{4}+u\mathbb{F}_{4}\). Int. J. Quantum Inf. 9, 689–700 (2011)
Li, J., Gao, J., Fu, F.W., Ma, F.: \(\mathbb{F}_qR\)-linear skew constacyclic codes and their application of constructing quantum codes. Quantum Inf. Process (2020). https://doi.org/10.1007/s11128-020-02700-x
Ma, F., Gao, J., Fu, F. W.: Constacyclic codes over the ring \(\mathbb{F}\mathit{_{p} +v\mathbb{F}}_{p}+v^{2}\mathbb{F}_{p}\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process, 17 (6), 19 pp. Art. 122 (2018)
Ma, F., Gao, J., Fu, F.W.: New non-binary quantum codes from constacyclic codes over \(\mathbb{F}_{q}[u, v]/\langle u^2-1, v^2-v, uv-vu\rangle \). Adv. Math. Commun. 13(2), 421–434 (2019)
Ozen, M., Ozzaim, N.T., Ince, H.: Skew quasi cyclic codes over \(\mathbb{F}_q+v\mathbb{F}_q\). J. Algebra Appl. 18(4), 1950077 (2019)
Qian, J.: Quantum codes from cyclic codes over \(\mathbb{F}_2+v\mathbb{F}_2\). J. Inf. Compt. Sci. 10, 1715–1722 (2013)
Rifa-Pous, H., Rifa, J., Ronquillo, L.: \(\mathbb{Z}_2\mathbb{Z}_4\)-Additive Perfect Codes in Steganography. Adv. Math. Commun. 5(3), 425–433 (2011)
Sari, M., Siap, I.: On quantum codes from cyclic codes over a class of nonchain rings. Bull. Korean Math. Soc. 53(6), 1617–1628 (2016)
Shi, M., Wu, R., Krotov, D.S.: On \(\mathbb{Z}_p\mathbb{Z}_{p^k}\)-additive codes and their duality. IEEE Trans. Inform. Theory 65(6), 3841–3847 (2019)
Shor, P.W.: Scheme for reducing decoherence in quantum memory Phys. Rev. A. 52, 2493–2496 (1995)
Shor, P. W.: Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124–134. (1994). https://doi.org/10.1109/sfcs.1994.365700
Acknowledgements
The authors are thankful to the University Grants Commission (UGC), Govt. of India, for financial supports under Sr. No. 2121540952, Ref. No. 20/12/2015(ii)EU-V dated 31/08/2016 and Indian Institute of Technology Patna for providing research facilities. The authors would like to thank the editor and anonymous referee(s) for careful reading and constructive suggestions to improve the presentation of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Islam, H., Prakash, O. New quantum codes from constacyclic and additive constacyclic codes. Quantum Inf Process 19, 319 (2020). https://doi.org/10.1007/s11128-020-02825-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02825-z