Abstract
Reconciliation is currently the bottleneck of continuous-variable quantum key distribution systems for its great influence on the key rate and the distance of systems. In this paper, we address the increase in key rates by accelerating the speed of reconciliation algorithms based on the protocol of sliced error correction on a heterogeneous computing structure (a GPGPU card (general purpose graphics processing units will be abbreviated as GPU in this paper) and a general CPU) in the framework of Open Computing Language (OpenCL) (OpenCL is a programming framework based on C language). A block length of its component codes of low-density parity-check (LDPC) codes up to 2\(^{17}\) bits is employed in order to achieve a higher reconciliation efficiency. To meet the requirements of the OpenCL specifications, we designed a data structure, namely static cross bi-directional circular linked list, to store a super large sparse check matrix of the LDPC codes. Such a configuration ensures the practicability of our system, i.e. a better trade-off between the speed and net key rates of the reconciliation. The speed of the proposed reconciliation scheme reaches about 70.1 Mb/s with 512 codewords decoding in parallel, approximately 3600 times faster than that with the platform with only a CPU.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
Signal-to-Noise Ratio, defined as the ratio of Alice’s modulation variance to the noise variance.
Here we use two levels, \(j=3,4\).
References
Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102(18), 180504 (2009)
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)
Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the International Conference on Computers, Systems and Signal Processing (1984)
Gyongyosi, L., Bacsardi, L., Imre, S.: A survey on quantum key distribution. Infocommun J 11(2), 14–21 (2019)
Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61(1), 010303 (1999)
Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)
Gyongyosi, L., Imre, S.: Low-dimensional reconciliation for continuous-variable quantum key distribution. Appl Sci 8(1), 87 (2018)
Lin, D., Huang, D., Huang, P., Peng, J., Zeng, G.: High performance reconciliation for continuous-variable quantum key distribution with ldpc code. Int. J. Quantum Inf. 13(02), 1550010 (2015)
Van Assche, G., Cardinal, J., Cerf, N.J.: Reconciliation of a quantum-distributed gaussian key. IEEE Trans. Inf. Theory 50(2), 394–400 (2004)
Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., et al.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 042305 (2007)
Lance, A.M., Symul, T., Sharma, V., Weedbrook, C., Ralph, T.C., Lam, P.K.: No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95(18), 180503 (2005)
Heid, M., Lütkenhaus, N.: Security of coherent-state quantum cryptography in the presence of gaussian noise. Phys. Rev. A 76(2), 022313 (2007)
García-Patrón, R., Cerf, N.J.: Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190503 (2006)
Leverrier, A., Alléaume, R., Boutros, J., Zémor, G., Grangier, P.: Multidimensional reconciliation for a continuous-variable quantum key distribution. Phys. Rev. A 77(4), 042325 (2008)
Jouguet, P., Kunz-Jacques, S., Leverrier, A.: Long-distance continuous-variable quantum key distribution with a gaussian modulation. Phys. Rev. A 84(6), 062317 (2011)
Yunyan, W., Dabo, G., Yanhuang, Z., Xiaokai, W, Zhuanling, H.: Algorithm of multidimensional reconciliation for continuous-variable quantum key distribution. Guangxue Xuebao/Acta Optica Sinica 34(8) (2014)
Gyongyosi, L., Imre, S.: Secret key rate proof of multicarrier continuous-variable quantum key distribution. Int. J. Commun. Syst. 32(4), e3865 (2019)
Gyongyosi, L., Imre, S.: Multiple access multicarrier continuous-variable quantum key distribution. Chaos Solitons Fract 114, 491–505 (2018)
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
Lin, Y., Niu, W.: High throughput LDPC decoder on GPU. IEEE Commun. Lett. 18(2), 344–347 (2014)
Maier, A.J., Cockburn, B.: Optimization of low-density parity check decoder performance for opencl designs synthesized to fpgas. Journal of Parallel and Distributed Computing 107, 04 (2017)
Bloch, M., Thangaraj, A., McLaughlin, S.W., Merolla, J.: LDPC-based secret key agreement over the Gaussian wiretap channel. In: 2006 IEEE International Symposium on Information Theory, pp. 1179–1183 (2006)
Slepian, D., Wolf, J.: Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 19(4), 471–480 (1973)
Grosshans, Frédéric, Cerf, Nicolas J., Wenger, Jérôme., Tualle-Brouri, Rosa., Grangier, Ph.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. arXiv preprint quant-ph/0306141, (2003)
Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)
MacKay, D.J.C., Mac Kay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)
Wachsmann, U., Fischer, R.F.H., Huber, J.B.: Multilevel codes: theoretical concepts and practical design rules. IEEE Trans. Inf. Theory 45(5), 1361–1391 (1999)
Guo, D., Zhang, Y., Wang, Y.: Performance optimization for the reconciliation of gaussian quantum key distribution. Guangxue Xuebao/Acta Opt. Sin. 34, 01 (2014)
Scarpino, M.: Opencl in Action. Manning Publications, Westampton (2011)
MacKay, D.J.C., Neal, R.M.: Near shannon limit performance of low density parity check codes. Electron. Lett. 32(18), 1645 (1996)
MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory 45(2), 399–431 (1999)
Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory 47(2), 619–637 (2001)
Lodewyck, J.: Quantum Key Distribution Device with Coherent States at Telecom Wavelength. Université Paris Sud - Paris XI, Theses (2006)
Yang, S., Lu, Z., Li, Y.: High-speed post-processing in continuous-variable quantum key distribution based on fpga implementation. J. Lightw. Technol. 38(15), 3935–3941 (2020)
Zhang, G., Haw, J.Y., Cai, H., Assad, S.M., Fitzsimons, J.F., Zhou, X., Zhang, Y., Yu, S., Wu, J., Xu, F., et al.: An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics 13(12), 839–842 (2019)
Acknowledgements
The authors would like to thank the supporting of the Natural Science Foundation of Shanxi province in China (Grants No. 201801D121118) and helpful discussions and revisions by Dr. Jinze Wu.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Guo, D., He, C., Guo, T. et al. Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Inf Process 19, 320 (2020). https://doi.org/10.1007/s11128-020-02832-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02832-0