Skip to main content
Log in

Decoherence of Einstein–Podolsky–Rosen steering and the teleportation fidelity in the dynamical Casimir effect

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the dissipative evolution of the Einstein–Podolsky–Rosen steering and the teleportation fidelity of the dynamical Casimir radiations in the thermal equilibrium environments. We consider two kinds of thermal equilibrium environments. One is the initial environments of the samples which produced the nonclassical dynamical Casimir radiations. The other is the thermal equilibrium environments in the transmission lines which are coupled to a low-noise amplifier of low temperature. In this paper, we observe that a high temperature of the environments results in a faster decoherence of steering and fidelity. The large detuning will accelerate the sudden death of one-way steering from Bob to Alice and fidelity, or vice versa. Moreover, we observe that if most of the damping is placed on Bob, the decoherence of one-way steering from Alice to Bob will be faster, while the one-way steering from Bob to Alice and fidelity are the opposite. However, when most of the thermal noise is placed on Alice in the transmission lines, the steering and fidelity are the most insensitive. It shows that it is important to choose the suitable asymmetric noise channel to protect the directional Einstein–Podolsky–Rosen steering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moore, G.T.: Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 11, 2679 (1970)

    Article  ADS  Google Scholar 

  2. Irish, E.K.: Generalized rotating-wave approximation for arbitrarily large coupling. Phys. Rev. Lett. 99, 173601 (2007)

    Article  ADS  Google Scholar 

  3. Uhlmann, M., Plunien, G., Schutzhold, R., Soff, G.: Resonant cavity photon creation via the dynamical Casimir effect. Phys. Rev. Lett. 93, 193601 (2004)

    Article  ADS  Google Scholar 

  4. Dodonov, V.V.: Current status of the dynamical Casimir effect. Phys. Scr. 82, 038105 (2010)

    Article  ADS  Google Scholar 

  5. Dodonov, V.V., Klimov, A.B., Manko, V.I.: Generation of squeezed states in a resonator with a moving wall. Phys. Lett. A 149, 225 (1990)

    Article  ADS  Google Scholar 

  6. Dalvit, D.A.R., Neto, P.A.M., Mazzitelli, F.D.: Fluctuations, dissipation and the dynamical Casimir effect. Lect. Notes Phys. 834, 419 (2011)

    Article  ADS  Google Scholar 

  7. Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F.: Colloquium: stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1 (2012)

    Article  ADS  Google Scholar 

  8. CRego, A.L., Silva, H.O., Alves, D.T., Farina, C.: New signatures of the dynamical Casimir effect in a superconducting circuit. Phys. Rev. D 90, 025003 (2014)

    Article  ADS  Google Scholar 

  9. Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I.: Dynamical Casimir effect in a double tunable superconducting circuit. Phys. Rev. A 93, 032501 (2016)

    Article  ADS  Google Scholar 

  10. Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I.: Dynamical Casimir effect in superconducting circuits: a numerical approach. Phys. Rev. A 98, 022512 (2018)

    Article  ADS  Google Scholar 

  11. Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376 (2011)

    Article  ADS  Google Scholar 

  12. Johansson, J.R., Johansson, G., Wilson, C.M., Delsing, P., Nori, F.: Nonclassical microwave radiation from the dynamical Casimir effect. Phys. Rev. A 87, 043804 (2013)

    Article  ADS  Google Scholar 

  13. Samos-Saenz de Buruaga, D.N., Sabin, C.: Quantum coherence in the dynamical Casimir effect. Phys. Rev. A 95, 022307 (2007)

    Article  ADS  Google Scholar 

  14. Sabín, C., Adesso, G.: Generation of quantum steering and interferometric power in the dynamical Casimir effect. Phys. Rev. A 92, 042107 (2015)

    Article  ADS  Google Scholar 

  15. Zhang, X., Liu, H., Wang, Z.H., Zheng, T.Y.: Asymmetric quantum correlations in the dynamical Casimir effect. Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  16. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  17. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  19. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein–Podolsky–Rosen correlations, bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Cavalcanti, E.G., Jones, S.J., Wiseman, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80, 032112 (2009)

    Article  ADS  Google Scholar 

  22. Lee, C.W., Ji, S.W., Nha, H.: Quantum steering for continuous-variable states. J. Opt. Soc. Am. B Opt. Phys. 30, 2483 (2013)

    Article  ADS  Google Scholar 

  23. Skrzypczyk, P., Navascués, M., Cavalcantik, D.: Quantifying Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)

    Article  ADS  Google Scholar 

  24. Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Bipartite non-local correlations in a double-quantum-dot excitonic system. J. Phys. A Math. Theor. 47, 335301 (2014)

    Article  MathSciNet  Google Scholar 

  25. Mohamed, A.-B.A., Eleuch, H.: Quantum correlation control for two semiconductor microcavities connected by an optical fiber. Phys. Scr. 92, 065101 (2017)

    Article  ADS  Google Scholar 

  26. Mohamed, A.-B.A.: Non-local correlations via Wigner–Yanase skew information in two SC-qubit having mutual interaction under phase decoherence. Eur. Phys. J. D 71, 261 (2017)

    Article  ADS  Google Scholar 

  27. Mohamed, A.-B.A.: Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and Bell’s non-locality. Quantum Inf. Process. 17, 96 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Mohamed, A.-B.A., Eleuch, H., Raymond Ooi, C.H.: Non-locality correlation in two driven qubits inside an open coherent cavity: trace norm distance and maximum Bell function. Sci. Rep. 9, 19632 (2019)

    Article  ADS  Google Scholar 

  29. Dodonov, V.V., Andreata, M.A.: Squeezing and photon distribution in a vibrating cavity. J. Phys. A Gen. Phys. 32, 6711 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  30. Aggarwal, N., Bhattacherjee, A.B., Banerjee, A., Mohan, M.: Influence of periodically modulated cavity field on the generation of atomic-squeezed states. J. Phys. B At. Mol. Opt. Phys. 48, 115501 (2015)

    Article  ADS  Google Scholar 

  31. Stassi, R., Liberato, S.D., Garziano, L., Spagnolo, B., Spagnolo, S.: Quantum control and long-range quantum correlations in dynamical Casimir arrays. Phys. Rev. A 92, 013830 (2015)

    Article  ADS  Google Scholar 

  32. Agustí, A., Solano, E., Sabín, C.: Entanglement through qubit motion and the dynamical Casimir effect. Phys. Rev. A 99, 052328 (2019)

    Article  ADS  Google Scholar 

  33. Scheel, S., Welsch, D.G.: Entanglement generation and degradation by passive optical devices. Phys. Rev. A 64, 063811 (2001)

    Article  ADS  Google Scholar 

  34. Wilson, D., Lee, J., Kim, M.S.: Entanglement of a two-mode squeezed state in a phase-sensitive Gaussian environment. J. Mod. Opt. 50, 1809 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  35. Bowen, W.P., Schnabel, R., Lam, P.K., Ralph, T.C.: Experimental investigation of criteria for continuous variable entanglement. Phys. Rev. Lett. 90, 043601 (2003)

    Article  ADS  Google Scholar 

  36. Rosaleszarate, L., Teh, R.Y., Kiesewetter, S., Brolis, A., Ng, K., Reid, M.D.: Decoherence of Einstein–Podolsky–Rosen steering. J. Opt. Soc. Am. B 32, A82 (2015)

    Article  Google Scholar 

  37. Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)

    Article  ADS  Google Scholar 

  38. Serafini, A., Illuminati, F., Paris, M.G.A., Siena, S.D.: Entanglement and purity of two-mode Gaussian states in noisy channels. Phys. Rev. A 69, 022318 (2004)

    Article  ADS  Google Scholar 

  39. He, Q.Y., Gong, Q.H., Reid, M.D.: Classifying directional Gaussian entanglement, Einstein–Podolsky–Rosen steering, and discord. Phys. Rev. Lett. 114, 060402 (2015)

    Article  ADS  Google Scholar 

  40. Pirandola, S., Mancini, S.: Quantum teleportation with continuous variables: a survey. Laser Phys. 16, 1418 (2006)

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by Natural National Science Foundation of China (NSFC) (11175044, 11347190).

Author information

Authors and Affiliations

Authors

Contributions

YL conceived the idea and performed the calculations with the aid of TZ and XZ. YL, TZ and XZ performed the analyses. YL wrote the manuscript with the input of XZ. All authors contributed to the paper.

Corresponding authors

Correspondence to Xue Zhang or Taiyu Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Zhang, X. & Zheng, T. Decoherence of Einstein–Podolsky–Rosen steering and the teleportation fidelity in the dynamical Casimir effect. Quantum Inf Process 19, 322 (2020). https://doi.org/10.1007/s11128-020-02833-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02833-z

Keywords

Navigation