Abstract
The circuit quantum acoustodynamics which are studied in hybrid quantum system composed by artificial atoms and surface acoustic waves (SAWs) have drawn a lot of attention when exploring the nonclassical properties of phonons. In this paper, we propose a hybrid system for indirect coupling between multiple SAW resonators via auxiliary transmons. First, by eliminating the qubit degrees of freedom, the energy exchange between two SAW resonators can be observed. In the dispersive regime and suitable rotating frame, Fock state transition and entanglement can be realized between two SAW resonators. Second, by treating transmon as a qutrit and applying a classical driving for qutrit, the correlated phonon pairs between two SAW resonators will be detected. Moreover, by replacing the SAW resonators with acoustic-wave pumps, the acoustically induced transparency phenomenon is realized in our system. The transmon qutrit is potential to use as a switch for propagating acoustic waves, allowing the acoustic waves to be transmitted or backscattered.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)
Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1–102 (2017)
Wendin, G.: Quantum information processing with superconducting circuits: a review. Rer. Prog. Phys. 80, 106001 (2017)
Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 431, 162–167 (2004)
Blais, A., Grimsmo, A.L., Girvin, S.M., Wallraff, A..: Circuit Quantum Electrodynamics. arXiv preprint arXiv:2005.12667
Gustafsson, M.V., Aref, T., Kockum, A.F., Ekström, M.K., Johansson, G., Delsing, P.: Propagating phonons coupled to an artificial atom. Rer. Prog. Phys. 346, 207–211 (2017)
Gustafsson, M.V., Santos, P.V., Johansson, G., Delsing, P.: Propagating phonons coupled to an artificial atom. Nat. Phys. 8, 338–343 (2012)
O.Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M.S., et al..: Quantum ground state and single-phonon control of a mechanical resonator. Nature (London), 464, 697–703 (2010)
Lemonde, M.-A., Meesala, S., Sipahigil, A., Schuetz, M.J.A., Lukin, M.D., Loncar, M., Rabl, P.: Phonon networks with silicon-vacancy centers in diamond waveguides. Phys. Rev. Lett. 120, 213603 (2018)
Jiang, Y., Maayani, S., Carmon, T., Nori, F., Jing, H.: Nonreciprocal phonon laser. Phys. Rev. Appl. 10, 064037 (2018)
Golter, D.A., Oo, T., Amezcua, M., Lekavicius, I., Stewart, K.A., Wang, H.: Coupling a surface acoustic wave to an electron spin in diamond via a dark state. Phys. Rev. X 6, 041060 (2016)
Couto Jr., O.D.D., Lazić, S., Iikawa, F., Stotz, J.A.H., Jahn, U., Hey, R., Santos, P.V.: Photon anti-bunching in acoustically pumped quantum dots. Nat. Photon. 3, 645 (2009)
Golter, D.A., Oo, T., Amezcua, M., Stewart, K.A., Wang, H.: Optomechanical quantum control of a nitrogen-vacancy center in diamond. Phys. Rev. Lett. 116, 143602 (2016)
Chu, Y., Kharel, P., Renninger, W.H., Burkhart, L.D., Frunzio, L., Rakich, P.T., Schoelkopf, R.J.: Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017)
Pirkkalainen, J.-M., Cho, S.U., Li, J., Paraoanu, G.S., Hakonen, P.J., Sillanpää, M.A.: Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature (London) 494, 211–215 (2013)
Andersson, G., Suri, B., Guo, L., Aref, T., Delsing, P.: Non-exponential decay of a giant artificial atom. Nat. Phys. 15, 1123–1127 (2019)
Aref, T., Delsing, P., Ekström, M.K., Kockum, A.Frisk, Gustafsson, M.V., Johansson, G., Leek, P.J., Magnusson, E., Manenti, R..: Superconducting Devices in Quantum Optics, pp. 217–244 (2016)
Moores, B.A., Sletten, L.R., Viennot, J.J., Lehnert, K.W.: Cavity quantum acoustic device in the multimode strong coupling regime. Phys. Rev. Lett. 120, 227701 (2018)
Manenti, R., Peterer, M.J., Nersisyan, A., Magnusson, E.B., Patterson, A., Leek, P.J.: Surface acoustic wave resonators in the quantum regime. Phys. Rev. B 93, 041411 (2016)
Magnusson, E.B., Williams, B.H., Manenti, R., Nam, M.-S., Nersisyan, A., Peterer, M.J., Ardavan, A., Leek, P.J.: Surface acoustic wave devices on bulk ZnO crystals at low temperature. Appl. Phys. Lett. 106, 063509 (2015)
Ekström, M.K., Aref, T., Runeson, J., Björck, J., Boström, I., Delsing, P.: Surface acoustic wave unidirectional transducers for quantum applications. Appl. Phys. Lett. 7, 073105 (2017)
Bienfait, A., Satzinger, K.J., Zhong, Y.P., Chang, H.-S., Chou, M.-H., Conner, C.R., Dumur, E., Grebel, J., Peairs, G.A., Povey, R.G., et al.: Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019)
Noguchi, A., Yamazaki, R., Tabuchi, Y., Nakamura, Y.: Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator. arXiv preprint arXiv:1808.03372
Bienfait, A., Zhong, Y.P., Chang, H.-S., Chou, M.-H., Conner, C.R., Dumur, E., Grebel, J.P., Gregory, A., Povey, R.G., Satzinger, K.J., et al.: Quantum erasure using entangled surface acoustic phonons. Science 10, 021055 (2020)
Wang, X., Li, H.-R., Li, F.-L.: Quantum erasure using entangled surface acoustic phonons. New J. Phys. 22, 033037 (2020)
Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., et al.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)
Chu, Y., Kharel, P., Yoon, T., Frunzio, L., Rakich, P.T., Schoelkopf, R.J.: Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature (London) 563, 666 (2018)
Naik, R.K., Leung, N., Chakram, S., Groszkowski, P., Lu, Y., Earnest, N., McKay, D.C., Koch, J., Schuster, D.I.: Random access quantum information processors using multimode circuit quantum electrodynamics. Nat. Commun. 8, 1904 (2017)
Schütz, M.J.A.: Universal Quantum Transducers Based on Surface Acoustic Waves, pp. 143–196 (2017)
Shumeiko, V.S.: Quantum acousto-optic transducer for superconducting qubits. Phys. Rev. A 93, 023838 (2016)
Pichler, H., Choi, S., Zoller, P., Lukin, M.D.: Universal photonic quantum computation via time-delayed feedback. Proc. Nat. Acad. Sci. USA 114, 11362–11367 (2017)
Kockum, A.F., Nori, F.: Quantum Bits with Josephson Junctions, pp. 703–741 (2019)
Paik, H., Schuster, D.I., Bishop, L.S., Kirchmair, G., Catelani, G., Sears, A.P., Johnson, B.R., Reagor, M.J., Frunzio, L., Glazman, L.I., et al.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011)
Lecocq, F., Teufel, J.D., Aumentado, J., Simmonds, R.W.: Resolving the vacuum fluctuations of an optomechanical system using an artificial atom. Nat. Phys. 11, 240501 (2015)
Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405–408 (2015)
Zhang, F.-Y., Yan, W.-B., Yang, C.-P.: Generalized coupling system between a superconducting qubit and two nanomechanical resonators. Phys. Rev. A 98, 042331 (2018)
Sun, C.P., Wei, L.F., Liu, Y., Nori, F.: Quantum transducers: integrating transmission lines and nanomechanical resonators via charge qubits. Phys. Rev. A 73, 022318 (2006)
Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)
Tao, M.-J., Hua, M., Ai, Q., Deng, F.-G., et al.:Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 062325 (2015)
Strauch, F.W., Jacobs, K., Simmonds, R.W.: Arbitrary control of entanglement between two superconducting resonators. Phys. Rev. Lett. 105, 050501 (2010)
Mariantoni, M., Deppe, F., Marx, A., Gross, R., Wilhelm, F.K., Solano, E.: Two-resonator circuit quantum electrodynamics: a superconducting quantum switch. Phys. Rev. B 78, 104508 (2008)
Reuther, G.M., Zueco, D., Deppe, F., Hoffmann, E., Menzel, E.P., Weißl, T., Mariantoni, M., Kohler, S., Marx, A., Solano, E., et al.:Two-resonator circuit quantum electrodynamics: Dissipative theory. Phys. Rev. B 81, 144510 (2010)
Johnson, B.R., Reed, M.D., Houck, A.A., Schuster, D.I., Bishop, L.S., Ginossar, E., Gambetta, J.M., DiCarlo, L., Frunzio, L., Girvin, S.M., et al.: Quantum non-demolition detection of single microwave photons in a circuit. Nat. Phys. 6, 663–667 (2010)
Sundaresan, N.M., Liu, Y., Sadri, D., Szőcs, L.J., Underwood, D.L., Malekakhlagh, M., Türeci, H.E., Houck, A.A.: Beyond strong coupling in a multimode cavity. Phys. Rev. X 5, 021035 (2015)
Semiao, F.L., Furuya, K., Milburn, G.J.: Kerr nonlinearities and nonclassical states with superconducting qubits and nanomechanical resonators. Phys. Rev. A 79, 063811 (2009)
Saito, K., Wubs, M., Kohler, S., Kayanuma, Y., Hänggi, P.: Dissipative Landau–Zener transitions of a qubit: bath-specific and universal behavior. Phys. Rev. B 75, 214308 (2007)
Sathyamoorthy, S.R., Tornberg, L., Kockum, A.F., Baragiola, B.Q., Combes, J., Wilson, C.M., Stace, T.M., Johansson, G.: Quantum nondemolition detection of a propagating microwave photon. Phys. Rev. B 112, 093601 (2014)
Noguchi, A., Yamazaki, R., Tabuchi, Y., Nakamura, Y.: Qubit-assisted transduction for a detection of surface acoustic waves near the quantum limit. Phys. Rev. Lett. 119, 180505 (2017)
Bolgar, A.N., Zotova, J.I., Kirichenko, D.D., Besedin, I.S., Semenov, A.V., Shaikhaidarov, R.S., Astafiev, O.V.: Quantum regime of a two-dimensional phonon cavity. Phys. Rev. Lett. 120, 223603 (2018)
Manenti, R., Kockum, A.F., Patterson, A., Behrle, T., Rahamim, J., Tancredi, G., Nori, F., Leek, P.J.: Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. 8, 975 (2017)
Satzinger, K.J., Zhong, Y.P., Chang, H.-S., Peairs, G.A., Bienfait, A., Chou, M.-H., Cleland, A.Y., Conner, C.R., Dumur, E., Grebel, J., et al.: Quantum control of surface acoustic-wave phonons. Nature (London) 563, 661 (2018)
Andersson, G., Bilobran, A.L.O., Scigliuzzo, M., de Lima, M.M., Cole, J.H. Delsing, P.: Acoustic spectral hole-burning in a two-level system ensemble. arXiv preprint arXiv:2002.09389 (2020)
Koch, J., Terri, M.Y., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)
Hashimoto, K., Hashimoto, K.Y.: Surface acoustic wave devices in telecommunications (2000)
Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)
Sete, E.A., Martinis, J.M., Korotkov, A.N.: Quantum theory of a bandpass Purcell filter for qubit readout. Phys. Rev. A 92, 012325 (2015)
Lu, X.-J., Li, M., Zhao, Z.Y., Zhang, C.-L., Han, H.-P., Feng, Z.-B., Zhou, Y.-Q.: Nonleaky and accelerated population transfer in a transmon qutrit. Phys. Rev. A 96, 023843 (2017)
Kimble, H.J.: The quantum internet. Nature (London) 453, 1023 (2008)
Raimond, J.-M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)
Zhu, C.J., Yang, Y.P., Agarwal, G.S.: Collective multiphoton blockade in cavity quantum electrodynamics. Phys. Rev. A 95, 063842 (2017)
Imamoglu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)
Rebić, S., Parkins, A.S., Tan, S.M.: Field correlations and effective two-level atom-cavity systems. Phys. Rev. A 69, 035804 (2004)
Kubanek, A., Ourjoumtsev, A., Schuster, I., Koch, M., Pinkse, P.W.H., Murr, K., Rempe, G.: Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett. 101, 203602 (2008)
Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)
Cohen-Tannoudji, C.: Dark resonances from optical pumping to cold atoms and molecules. Phys. Scr. 90, 088013 (2015)
Jurczak, C., Sengstock, K., Kaiser, R., Vansteenkiste, N., Westbrook, C.I., Aspect, A.: Observation of intensity correlations in the fluorescence from laser cooled atoms. Opt. Commun. 115, 480–484 (1995)
Huang, H., Zhu, S.-Y., Zubairy, M.S., Scully, M.O.: Two-time intensity correlation in a driven three-level system. Phys. Rev. A 53, 1834 (1996)
Walls, D.F., Milburn, G.J.: Quantum optics (2007)
Miranowicz, A., Bajer, J., Matsueda, H., Wahiddin, M.R.B., Tanas, R.: Comparative study of photon antibunching of non-stationary fields. J. Opt. B Quantum Semiclass. Opt. 1, 511 (1999)
Wang, X., Miranowicz, A., Li, H.-R., Nori, F.: Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit. Phys. Rev. A 93, 063861 (2016)
Boller, K.-J., Imamoğlu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991)
Abi-Salloum, T.Y.: Electromagnetically induced transparency and Autler–Townes splitting: Two similar but distinct phenomena in two categories of three-level atomic systems. Phys. Rev. A 81, 053836 (2010)
Stevanović, L., Filipović, N., Pavlović, V.: Electromagnetically induced transparency in degenerate ladder-type system. Opt. Quant. Electron. 50, 287 (2018)
Alotaibi, H.M.M., Sanders, B.C.: Enhanced nonlinear susceptibility via double–double electromagnetically induced transparency. Phys. Rev. A 94, 053832 (2016)
Heinze, G., Hubrich, C., Halfmann, T.: Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett. 111, 033601 (2013)
Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature (London) 397, 594 (1999)
Liu, Y., Talbi, A., Matar, O.B., Pernod, P., Djafari-Rouhani, B., et al.: Autler-Townes splitting and acoustically induced transparency based on love waves interacting with a pillared metasurface. Phys. Rev. Appl. 11, 064066 (2019)
Quotane, Ilyasse, Djafari-Rouhani, Bahram, others.:Trapped-mode-induced Fano resonance and acoustical transparency in a one-dimensional solid-fluid phononic crystal. Phys. Rev. B 97, 024304 (2018)
Santillán, A., Bozhevolnyi, S.I.: Acoustic transparency and slow sound using detuned acoustic resonators. Phys. Rev. B 84, 064304 (2011)
Liu, F., Ke, M., Zhang, A., Wen, W., Shi, J., Liu, Z., Sheng, P.: Acoustic analog of electromagnetically induced transparency in periodic arrays of square rods. Phys. Rev. E 82, 026601 (2010)
Andersson, G., Ekström, M.K., Delsing, P.: Electromagnetically induced acoustic transparency with a superconducting circuit. Phys. Rev. Lett. 124, 240402 (2020)
Abdumalikov Jr., A.A., Astafiev, O., Zagoskin, A.M., Pashkin, Y.A., Nakamura, Y., Tsai, J.S.: Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010)
Astafiev, O., Zagoskin, A.M., Abdumalikov, A.A., Pashkin, Y.A., Yamamoto, T., Inomata, K., Nakamura, Y., Tsai, J.S.: Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)
Anisimov, P.M., Dowling, J.P., Sanders, B.C.: Objectively discerning Autler–Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107, 163604 (2011)
Wang, X., Li, H.-R., Chen, D.-X. , Liu, W.-X. , Li, Fu-li.: Tunable electromagnetically induced transparency in a composite superconducting system. Opt. Commun. 366, 321–327 (2016)
Acknowledgements
The authors acknowledge fruitful discussions with Wen-Xiao Liu, Xue-Jian Sun and Hao Chen. X.W. is supported by China Postdoctoral Science Foundation No. 2018M631136 and the Natural Science Foundation of China under Grant No. 11804270. H.R.L. is supported by the Natural Science Foundation of China (Grant No.11774284).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xue, JJ., Zhu, WQ., He, YN. et al. Two-acoustic-cavity interaction mediated by superconducting artificial atoms. Quantum Inf Process 19, 333 (2020). https://doi.org/10.1007/s11128-020-02838-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02838-8