Skip to main content

Advertisement

Log in

Two-acoustic-cavity interaction mediated by superconducting artificial atoms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The circuit quantum acoustodynamics which are studied in hybrid quantum system composed by artificial atoms and surface acoustic waves (SAWs) have drawn a lot of attention when exploring the nonclassical properties of phonons. In this paper, we propose a hybrid system for indirect coupling between multiple SAW resonators via auxiliary transmons. First, by eliminating the qubit degrees of freedom, the energy exchange between two SAW resonators can be observed. In the dispersive regime and suitable rotating frame, Fock state transition and entanglement can be realized between two SAW resonators. Second, by treating transmon as a qutrit and applying a classical driving for qutrit, the correlated phonon pairs between two SAW resonators will be detected. Moreover, by replacing the SAW resonators with acoustic-wave pumps, the acoustically induced transparency phenomenon is realized in our system. The transmon qutrit is potential to use as a switch for propagating acoustic waves, allowing the acoustic waves to be transmitted or backscattered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    ADS  Google Scholar 

  2. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1–102 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Wendin, G.: Quantum information processing with superconducting circuits: a review. Rer. Prog. Phys. 80, 106001 (2017)

    ADS  MathSciNet  Google Scholar 

  4. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 431, 162–167 (2004)

    ADS  Google Scholar 

  5. Blais, A., Grimsmo, A.L., Girvin, S.M., Wallraff, A..: Circuit Quantum Electrodynamics. arXiv preprint arXiv:2005.12667

  6. Gustafsson, M.V., Aref, T., Kockum, A.F., Ekström, M.K., Johansson, G., Delsing, P.: Propagating phonons coupled to an artificial atom. Rer. Prog. Phys. 346, 207–211 (2017)

    Google Scholar 

  7. Gustafsson, M.V., Santos, P.V., Johansson, G., Delsing, P.: Propagating phonons coupled to an artificial atom. Nat. Phys. 8, 338–343 (2012)

    Google Scholar 

  8. O.Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M.S., et al..: Quantum ground state and single-phonon control of a mechanical resonator. Nature (London), 464, 697–703 (2010)

  9. Lemonde, M.-A., Meesala, S., Sipahigil, A., Schuetz, M.J.A., Lukin, M.D., Loncar, M., Rabl, P.: Phonon networks with silicon-vacancy centers in diamond waveguides. Phys. Rev. Lett. 120, 213603 (2018)

    ADS  Google Scholar 

  10. Jiang, Y., Maayani, S., Carmon, T., Nori, F., Jing, H.: Nonreciprocal phonon laser. Phys. Rev. Appl. 10, 064037 (2018)

    ADS  Google Scholar 

  11. Golter, D.A., Oo, T., Amezcua, M., Lekavicius, I., Stewart, K.A., Wang, H.: Coupling a surface acoustic wave to an electron spin in diamond via a dark state. Phys. Rev. X 6, 041060 (2016)

    Google Scholar 

  12. Couto Jr., O.D.D., Lazić, S., Iikawa, F., Stotz, J.A.H., Jahn, U., Hey, R., Santos, P.V.: Photon anti-bunching in acoustically pumped quantum dots. Nat. Photon. 3, 645 (2009)

    ADS  Google Scholar 

  13. Golter, D.A., Oo, T., Amezcua, M., Stewart, K.A., Wang, H.: Optomechanical quantum control of a nitrogen-vacancy center in diamond. Phys. Rev. Lett. 116, 143602 (2016)

    ADS  Google Scholar 

  14. Chu, Y., Kharel, P., Renninger, W.H., Burkhart, L.D., Frunzio, L., Rakich, P.T., Schoelkopf, R.J.: Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Pirkkalainen, J.-M., Cho, S.U., Li, J., Paraoanu, G.S., Hakonen, P.J., Sillanpää, M.A.: Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature (London) 494, 211–215 (2013)

    ADS  Google Scholar 

  16. Andersson, G., Suri, B., Guo, L., Aref, T., Delsing, P.: Non-exponential decay of a giant artificial atom. Nat. Phys. 15, 1123–1127 (2019)

    Google Scholar 

  17. Aref, T., Delsing, P., Ekström, M.K., Kockum, A.Frisk, Gustafsson, M.V., Johansson, G., Leek, P.J., Magnusson, E., Manenti, R..: Superconducting Devices in Quantum Optics, pp. 217–244 (2016)

  18. Moores, B.A., Sletten, L.R., Viennot, J.J., Lehnert, K.W.: Cavity quantum acoustic device in the multimode strong coupling regime. Phys. Rev. Lett. 120, 227701 (2018)

    ADS  Google Scholar 

  19. Manenti, R., Peterer, M.J., Nersisyan, A., Magnusson, E.B., Patterson, A., Leek, P.J.: Surface acoustic wave resonators in the quantum regime. Phys. Rev. B 93, 041411 (2016)

    ADS  Google Scholar 

  20. Magnusson, E.B., Williams, B.H., Manenti, R., Nam, M.-S., Nersisyan, A., Peterer, M.J., Ardavan, A., Leek, P.J.: Surface acoustic wave devices on bulk ZnO crystals at low temperature. Appl. Phys. Lett. 106, 063509 (2015)

    ADS  Google Scholar 

  21. Ekström, M.K., Aref, T., Runeson, J., Björck, J., Boström, I., Delsing, P.: Surface acoustic wave unidirectional transducers for quantum applications. Appl. Phys. Lett. 7, 073105 (2017)

    ADS  Google Scholar 

  22. Bienfait, A., Satzinger, K.J., Zhong, Y.P., Chang, H.-S., Chou, M.-H., Conner, C.R., Dumur, E., Grebel, J., Peairs, G.A., Povey, R.G., et al.: Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019)

    ADS  Google Scholar 

  23. Noguchi, A., Yamazaki, R., Tabuchi, Y., Nakamura, Y.: Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator. arXiv preprint arXiv:1808.03372

  24. Bienfait, A., Zhong, Y.P., Chang, H.-S., Chou, M.-H., Conner, C.R., Dumur, E., Grebel, J.P., Gregory, A., Povey, R.G., Satzinger, K.J., et al.: Quantum erasure using entangled surface acoustic phonons. Science 10, 021055 (2020)

    Google Scholar 

  25. Wang, X., Li, H.-R., Li, F.-L.: Quantum erasure using entangled surface acoustic phonons. New J. Phys. 22, 033037 (2020)

    ADS  Google Scholar 

  26. Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., et al.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)

    ADS  Google Scholar 

  27. Chu, Y., Kharel, P., Yoon, T., Frunzio, L., Rakich, P.T., Schoelkopf, R.J.: Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature (London) 563, 666 (2018)

    ADS  Google Scholar 

  28. Naik, R.K., Leung, N., Chakram, S., Groszkowski, P., Lu, Y., Earnest, N., McKay, D.C., Koch, J., Schuster, D.I.: Random access quantum information processors using multimode circuit quantum electrodynamics. Nat. Commun. 8, 1904 (2017)

    ADS  Google Scholar 

  29. Schütz, M.J.A.: Universal Quantum Transducers Based on Surface Acoustic Waves, pp. 143–196 (2017)

  30. Shumeiko, V.S.: Quantum acousto-optic transducer for superconducting qubits. Phys. Rev. A 93, 023838 (2016)

    ADS  Google Scholar 

  31. Pichler, H., Choi, S., Zoller, P., Lukin, M.D.: Universal photonic quantum computation via time-delayed feedback. Proc. Nat. Acad. Sci. USA 114, 11362–11367 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Kockum, A.F., Nori, F.: Quantum Bits with Josephson Junctions, pp. 703–741 (2019)

  33. Paik, H., Schuster, D.I., Bishop, L.S., Kirchmair, G., Catelani, G., Sears, A.P., Johnson, B.R., Reagor, M.J., Frunzio, L., Glazman, L.I., et al.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011)

    ADS  Google Scholar 

  34. Lecocq, F., Teufel, J.D., Aumentado, J., Simmonds, R.W.: Resolving the vacuum fluctuations of an optomechanical system using an artificial atom. Nat. Phys. 11, 240501 (2015)

    Google Scholar 

  35. Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405–408 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Zhang, F.-Y., Yan, W.-B., Yang, C.-P.: Generalized coupling system between a superconducting qubit and two nanomechanical resonators. Phys. Rev. A 98, 042331 (2018)

    ADS  Google Scholar 

  37. Sun, C.P., Wei, L.F., Liu, Y., Nori, F.: Quantum transducers: integrating transmission lines and nanomechanical resonators via charge qubits. Phys. Rev. A 73, 022318 (2006)

    ADS  Google Scholar 

  38. Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)

    ADS  Google Scholar 

  39. Tao, M.-J., Hua, M., Ai, Q., Deng, F.-G., et al.:Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 062325 (2015)

  40. Strauch, F.W., Jacobs, K., Simmonds, R.W.: Arbitrary control of entanglement between two superconducting resonators. Phys. Rev. Lett. 105, 050501 (2010)

    ADS  Google Scholar 

  41. Mariantoni, M., Deppe, F., Marx, A., Gross, R., Wilhelm, F.K., Solano, E.: Two-resonator circuit quantum electrodynamics: a superconducting quantum switch. Phys. Rev. B 78, 104508 (2008)

    ADS  Google Scholar 

  42. Reuther, G.M., Zueco, D., Deppe, F., Hoffmann, E., Menzel, E.P., Weißl, T., Mariantoni, M., Kohler, S., Marx, A., Solano, E., et al.:Two-resonator circuit quantum electrodynamics: Dissipative theory. Phys. Rev. B 81, 144510 (2010)

  43. Johnson, B.R., Reed, M.D., Houck, A.A., Schuster, D.I., Bishop, L.S., Ginossar, E., Gambetta, J.M., DiCarlo, L., Frunzio, L., Girvin, S.M., et al.: Quantum non-demolition detection of single microwave photons in a circuit. Nat. Phys. 6, 663–667 (2010)

    Google Scholar 

  44. Sundaresan, N.M., Liu, Y., Sadri, D., Szőcs, L.J., Underwood, D.L., Malekakhlagh, M., Türeci, H.E., Houck, A.A.: Beyond strong coupling in a multimode cavity. Phys. Rev. X 5, 021035 (2015)

    Google Scholar 

  45. Semiao, F.L., Furuya, K., Milburn, G.J.: Kerr nonlinearities and nonclassical states with superconducting qubits and nanomechanical resonators. Phys. Rev. A 79, 063811 (2009)

    ADS  Google Scholar 

  46. Saito, K., Wubs, M., Kohler, S., Kayanuma, Y., Hänggi, P.: Dissipative Landau–Zener transitions of a qubit: bath-specific and universal behavior. Phys. Rev. B 75, 214308 (2007)

    ADS  Google Scholar 

  47. Sathyamoorthy, S.R., Tornberg, L., Kockum, A.F., Baragiola, B.Q., Combes, J., Wilson, C.M., Stace, T.M., Johansson, G.: Quantum nondemolition detection of a propagating microwave photon. Phys. Rev. B 112, 093601 (2014)

    Google Scholar 

  48. Noguchi, A., Yamazaki, R., Tabuchi, Y., Nakamura, Y.: Qubit-assisted transduction for a detection of surface acoustic waves near the quantum limit. Phys. Rev. Lett. 119, 180505 (2017)

    ADS  Google Scholar 

  49. Bolgar, A.N., Zotova, J.I., Kirichenko, D.D., Besedin, I.S., Semenov, A.V., Shaikhaidarov, R.S., Astafiev, O.V.: Quantum regime of a two-dimensional phonon cavity. Phys. Rev. Lett. 120, 223603 (2018)

    ADS  Google Scholar 

  50. Manenti, R., Kockum, A.F., Patterson, A., Behrle, T., Rahamim, J., Tancredi, G., Nori, F., Leek, P.J.: Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. 8, 975 (2017)

    ADS  Google Scholar 

  51. Satzinger, K.J., Zhong, Y.P., Chang, H.-S., Peairs, G.A., Bienfait, A., Chou, M.-H., Cleland, A.Y., Conner, C.R., Dumur, E., Grebel, J., et al.: Quantum control of surface acoustic-wave phonons. Nature (London) 563, 661 (2018)

  52. Andersson, G., Bilobran, A.L.O., Scigliuzzo, M., de Lima, M.M., Cole, J.H. Delsing, P.: Acoustic spectral hole-burning in a two-level system ensemble. arXiv preprint arXiv:2002.09389 (2020)

  53. Koch, J., Terri, M.Y., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    ADS  Google Scholar 

  54. Hashimoto, K., Hashimoto, K.Y.: Surface acoustic wave devices in telecommunications (2000)

  55. Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    ADS  Google Scholar 

  56. Sete, E.A., Martinis, J.M., Korotkov, A.N.: Quantum theory of a bandpass Purcell filter for qubit readout. Phys. Rev. A 92, 012325 (2015)

    ADS  Google Scholar 

  57. Lu, X.-J., Li, M., Zhao, Z.Y., Zhang, C.-L., Han, H.-P., Feng, Z.-B., Zhou, Y.-Q.: Nonleaky and accelerated population transfer in a transmon qutrit. Phys. Rev. A 96, 023843 (2017)

    ADS  Google Scholar 

  58. Kimble, H.J.: The quantum internet. Nature (London) 453, 1023 (2008)

    ADS  Google Scholar 

  59. Raimond, J.-M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Zhu, C.J., Yang, Y.P., Agarwal, G.S.: Collective multiphoton blockade in cavity quantum electrodynamics. Phys. Rev. A 95, 063842 (2017)

    ADS  Google Scholar 

  61. Imamoglu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)

    ADS  Google Scholar 

  62. Rebić, S., Parkins, A.S., Tan, S.M.: Field correlations and effective two-level atom-cavity systems. Phys. Rev. A 69, 035804 (2004)

    ADS  Google Scholar 

  63. Kubanek, A., Ourjoumtsev, A., Schuster, I., Koch, M., Pinkse, P.W.H., Murr, K., Rempe, G.: Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett. 101, 203602 (2008)

    ADS  Google Scholar 

  64. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    ADS  Google Scholar 

  65. Cohen-Tannoudji, C.: Dark resonances from optical pumping to cold atoms and molecules. Phys. Scr. 90, 088013 (2015)

    ADS  Google Scholar 

  66. Jurczak, C., Sengstock, K., Kaiser, R., Vansteenkiste, N., Westbrook, C.I., Aspect, A.: Observation of intensity correlations in the fluorescence from laser cooled atoms. Opt. Commun. 115, 480–484 (1995)

    ADS  Google Scholar 

  67. Huang, H., Zhu, S.-Y., Zubairy, M.S., Scully, M.O.: Two-time intensity correlation in a driven three-level system. Phys. Rev. A 53, 1834 (1996)

    ADS  Google Scholar 

  68. Walls, D.F., Milburn, G.J.: Quantum optics (2007)

  69. Miranowicz, A., Bajer, J., Matsueda, H., Wahiddin, M.R.B., Tanas, R.: Comparative study of photon antibunching of non-stationary fields. J. Opt. B Quantum Semiclass. Opt. 1, 511 (1999)

    ADS  Google Scholar 

  70. Wang, X., Miranowicz, A., Li, H.-R., Nori, F.: Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit. Phys. Rev. A 93, 063861 (2016)

    ADS  Google Scholar 

  71. Boller, K.-J., Imamoğlu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991)

    ADS  Google Scholar 

  72. Abi-Salloum, T.Y.: Electromagnetically induced transparency and Autler–Townes splitting: Two similar but distinct phenomena in two categories of three-level atomic systems. Phys. Rev. A 81, 053836 (2010)

    ADS  Google Scholar 

  73. Stevanović, L., Filipović, N., Pavlović, V.: Electromagnetically induced transparency in degenerate ladder-type system. Opt. Quant. Electron. 50, 287 (2018)

    Google Scholar 

  74. Alotaibi, H.M.M., Sanders, B.C.: Enhanced nonlinear susceptibility via double–double electromagnetically induced transparency. Phys. Rev. A 94, 053832 (2016)

    ADS  Google Scholar 

  75. Heinze, G., Hubrich, C., Halfmann, T.: Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett. 111, 033601 (2013)

    ADS  Google Scholar 

  76. Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature (London) 397, 594 (1999)

    ADS  Google Scholar 

  77. Liu, Y., Talbi, A., Matar, O.B., Pernod, P., Djafari-Rouhani, B., et al.: Autler-Townes splitting and acoustically induced transparency based on love waves interacting with a pillared metasurface. Phys. Rev. Appl. 11, 064066 (2019)

    ADS  Google Scholar 

  78. Quotane, Ilyasse, Djafari-Rouhani, Bahram, others.:Trapped-mode-induced Fano resonance and acoustical transparency in a one-dimensional solid-fluid phononic crystal. Phys. Rev. B 97, 024304 (2018)

  79. Santillán, A., Bozhevolnyi, S.I.: Acoustic transparency and slow sound using detuned acoustic resonators. Phys. Rev. B 84, 064304 (2011)

    ADS  Google Scholar 

  80. Liu, F., Ke, M., Zhang, A., Wen, W., Shi, J., Liu, Z., Sheng, P.: Acoustic analog of electromagnetically induced transparency in periodic arrays of square rods. Phys. Rev. E 82, 026601 (2010)

    ADS  Google Scholar 

  81. Andersson, G., Ekström, M.K., Delsing, P.: Electromagnetically induced acoustic transparency with a superconducting circuit. Phys. Rev. Lett. 124, 240402 (2020)

    ADS  Google Scholar 

  82. Abdumalikov Jr., A.A., Astafiev, O., Zagoskin, A.M., Pashkin, Y.A., Nakamura, Y., Tsai, J.S.: Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010)

    ADS  Google Scholar 

  83. Astafiev, O., Zagoskin, A.M., Abdumalikov, A.A., Pashkin, Y.A., Yamamoto, T., Inomata, K., Nakamura, Y., Tsai, J.S.: Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)

    ADS  Google Scholar 

  84. Anisimov, P.M., Dowling, J.P., Sanders, B.C.: Objectively discerning Autler–Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107, 163604 (2011)

    ADS  Google Scholar 

  85. Wang, X., Li, H.-R., Chen, D.-X. , Liu, W.-X. , Li, Fu-li.: Tunable electromagnetically induced transparency in a composite superconducting system. Opt. Commun. 366, 321–327 (2016)

Download references

Acknowledgements

The authors acknowledge fruitful discussions with Wen-Xiao Liu, Xue-Jian Sun and Hao Chen. X.W. is supported by China Postdoctoral Science Foundation No. 2018M631136 and the Natural Science Foundation of China under Grant No. 11804270. H.R.L. is supported by the Natural Science Foundation of China (Grant No.11774284).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang or Hong-Rong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, JJ., Zhu, WQ., He, YN. et al. Two-acoustic-cavity interaction mediated by superconducting artificial atoms. Quantum Inf Process 19, 333 (2020). https://doi.org/10.1007/s11128-020-02838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02838-8

Keywords