Skip to main content
Log in

Gaussian coherence-breaking channels and coherence measures

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We give a characterization of arbitrary n-mode Gaussian coherence-breaking channels (GCBCs) and construct a kind of Gaussian coherence measure based on the topic of GCBCs. We show the measure can be calculated conveniently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ivan, J.S., Sabapathy, K.K., Simon, R.: Nonclassicality breaking is the same as entanglement breaking for bosonic Gaussian channels. Phys. Rev. A 88, 032302 (2013)

    Article  ADS  Google Scholar 

  3. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008)

    Article  ADS  Google Scholar 

  5. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  6. Brandão, F., Horodecki, M., Ng, N., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. USA 112, 3275 (2015)

    Article  ADS  Google Scholar 

  7. Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115, 210403 (2015)

    Article  ADS  Google Scholar 

  8. Misra, A., Singh, U., Bhattacharya, S., Pati, A.K.: Energy cost of creating quantum coherence. Phys. Rev. A 93, 052335 (2016)

    Article  ADS  Google Scholar 

  9. Glauber, R.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  10. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Sudarshan, E.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  12. Monras, A., Checińska, A., Ekert, A.: Witnessing quantum coherence in the presence of noise. New J. Phys. 16, 063041 (2014)

    Article  ADS  Google Scholar 

  13. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  14. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  15. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  16. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  17. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  18. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  19. Shao, L.-H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  20. Bu, K.F., Swati, Singh, U., Wu J.D: Coherence-breaking channels and coherence sudden death. Phys. Rev. A 94, 052335 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Streltsov, A.: Quantum Correlations Beyond Entanglement and their Role in Quantum Information Theory. (SpringerBriefs in Physics). arXiv:1411.3208 (2016)

  22. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    ADS  Google Scholar 

  23. Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)

    Article  ADS  Google Scholar 

  24. Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)

    Article  ADS  Google Scholar 

  25. Zhang, Y.-R., Shao, L.-H., Li, Y.-M., Fan, H.: Quantifying coherence in infinite-dimensional systems. Phys. Rev. A 93, 012334 (2016)

    Article  ADS  Google Scholar 

  26. Buono, D., Nocerino, G., Petrillo, G., Torre, G., Zonzo, G., Illuminati, F.: Quantum Coherence of Gaussian states. arXiv:1609.00913 [quant-ph] (2016)

  27. Xu, J. W.: Coherence of Quantum Gaussian Channels. arXiv:1908.04912 (2019)

  28. Xu, J.W.: Quantifying coherence of Gaussian states. Phys. Rev. A 93, 032111 (2016)

    Article  ADS  Google Scholar 

  29. Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15, 629 (2003)

    Article  MathSciNet  Google Scholar 

  30. Holevo, A.S.: Gaussian classical-quantum channels: gain of entanglement-assistance. Probl. Inf. Transm. 50, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  31. Holevo, A.S.: Information capacity of a quantum observable. Probl. Inf. Transm. 48(1), 1–10 (2012)

    Article  MathSciNet  Google Scholar 

  32. Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction. De Gruyter Studies in Mathematical Physics, vol. 16, pp. 11–349. Walter de Gruyter GmbH Co. KG, Berlin (2012)

    Book  Google Scholar 

Download references

Acknowledgements

Thanks for comments. The work is supported by National Science Foundation of China under Grant Nos. 11771011 and 11747126 and Natural Science Foundation of Shanxi Province under Grant No. 201701D221011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 3.2.

The “if” part is obvious, let us check the “only if” part.

If an n-mode Gaussian channel \(\Phi =\Phi (K, M, \bar{d})\) is coherence breaking, then \(\Phi \) is an incoherent operation. By Theorem 1 in [28], an n-mode Gaussian channel \(\Phi =\Phi (K, M, \bar{d})\) is incoherent (i.e., \(\Phi ({\mathcal {I}}_C^G)\subseteq {\mathcal {I}}_C^G\)) if and only if \(\bar{d}=0\) and there exists a permutation \(\pi \) on \(\{1,2, \ldots , n\}\) such that

$$\begin{aligned} K= & {} (P_\pi \otimes I_2) (\oplus _{i=1}^n t_i {\mathcal {O}}_i), \end{aligned}$$
(6.1)
$$\begin{aligned} M= & {} \oplus _{i=1}^n \lambda _{\pi (i)}I_2, \end{aligned}$$
(6.2)

where \(P_\pi \) is the \(n\times n\) permutation matrix corresponding to \(\pi \), \({\mathcal {O}}_i\)s are some \(2\times 2\) orthogonal matrices and \(\lambda _j\ge \frac{1}{2}|t_j^2- 1|\) whenever \({{\mathcal {O}}}_i\) is symplectic or \(\lambda _j\ge \frac{1}{2}|t_j^2+ 1|\) otherwise.

To complete the proof, let us show each \(t_i=0\) for any \(1\le i\le n\). Assume on the contrary \(t_i\not =0\) for some i. We take the n-mode input state \(\rho \) with its covariance matrix \(\nu _\rho = I_2\oplus \cdots \oplus I_2 \oplus \nu _i \oplus I_2 \oplus \cdots \oplus I_2\), where \(\nu _i=\left( \begin{array} {ccccccccc} a &{}\quad c \\ c &{} \quad b\\ \end{array}\right) ,\) where \(a\ge 0, b\ge 0\), and \(ab\ge c^2+\frac{1}{4}\). Recall that a 2\(\times \)2 real orthogonal matrix has one of the following forms:

$$\begin{aligned} \left( \begin{array} {ccccccccc} \cos \theta &{}\quad \sin \theta \\ -\sin \theta &{} \quad \cos \theta \\ \end{array}\right) ,\quad \left( \begin{array} {ccccccccc} \cos \theta &{}\quad \sin \theta \\ \sin \theta &{} \quad -\cos \theta \\ \end{array}\right) . \end{aligned}$$
(6.3)

Next we divide the proof into two cases.

If \({\mathcal {O}}_i\) has the first form in ( 6.3), then \(t_i {\mathcal {O}}_i \nu _i {\mathcal {O}}_i^T + M_i\) has to be diagonal according to ( 6.1) and ( 6.2). It follows from a short computation that

$$\begin{aligned} t_i[-a \cos \theta \sin \theta - c \sin ^2 \theta +c \cos ^2 \theta + b\cos \theta \sin \theta ]=0 \end{aligned}$$
(6.4)

holds for all real numbers abc with \(a\ge 0, b\ge 0\) and \(ab\ge c^2+\frac{1}{4}\). As \(t_i\ne 0\) in Eq. (6.4), taking \(c\ne 0\) and \(a= b\) leads to \(\cos ^2 \theta =\sin ^2 \theta \), that is, \(\cos \theta =\pm \sin \theta \). Thus, \((b-a)\cos \theta \sin \theta \) is always zero in Eq  (6.4). Taking \(a\ne b\), we get either \(\cos \theta =0\) or \(\sin \theta =0\). It follows from \(\cos \theta =\pm \sin \theta \) that \(\cos \theta =\sin \theta =0\), a contradiction. So \(t_i=0\)

Similarly, if \({\mathcal {O}}_i\) has the second form, we also have \(t_i=0\).

In summary, \(t_i=0\) for all i. We complete the proof.\(\square \)

Proof of Theorem 4.1

It is obvious that \(C_{CB}^G\) is always non-negative. A fact is that a Gaussian state \(\rho \) is incoherent iff it is a thermal state (its covariance matrix is the multiple of the identity and displacement vector is zero [28]. Next we show \(C_{CB}^G(\rho )=0\) iff \(\rho \) is incoherent. On the one hand, if \(\rho \) is incoherent, then \(\nu _\rho =\omega _\rho I_2\) and \(\bar{d}=0\). It follows that \( \Vert \nu _\rho -\phi _0(\nu _\rho )\Vert +\Vert \bar{d}\Vert _2=0\) with the GCBC \(\phi _0\) satisfying \(\phi _0(\nu _\rho )=\omega _\rho I_2\). So \(C_{CB}^G(\rho )=0\). On the other hand, if \(C_{CB}^G(\rho )=0\), then \(\bar{d}=0\) and \(\mathrm{min}_{\phi \in \Omega _{CB}^G}\Vert \nu _\rho -\phi (\nu _\rho )\Vert =0\). It follows that there is \(\phi _0\in \Omega _{CB}^G\) such that \(\Vert \nu _\rho -\phi _0(\nu _\rho )\Vert =0\). Without loss of generality, assume that \(\phi _0(\nu _\rho )=\lambda _\rho I_2\). So \(\nu _\rho =\lambda _\rho I_2\). It follows that \(\rho \) is incoherent. We complete the proof.\(\square \)

Proof of Theorem 4.2

By (4.2), it is enough to show \(\Vert S_U\nu _\rho S_U^T-\omega I_2\Vert _F=\Vert \nu _\rho -\omega I_2\Vert _F\) for an arbitrary \(2\times 2\) real symplectic matrix \(S_U\). Indeed,

$$\begin{aligned} \begin{array}{llll}\Vert S_U\nu _\rho S_U^T-\omega I_2\Vert _F&{}=\Vert S_U(\nu _\rho -\omega I_2) S_U^T\Vert _F\\ &{}=\sqrt{\mathrm{tr}(S_U(\nu _\rho -\omega I_2)S_U^TS_U(\nu _\rho -\omega I_2)^TS_U^T)}\\ &{}=\sqrt{\mathrm{tr}(S_U(\nu _\rho -\omega I_2)^2S_U^T)}\\ &{}=\sqrt{\mathrm{tr}((\nu _\rho -\omega I_2)^2)}\\ &{}=\Vert \nu _\rho -\omega I_2\Vert _F.\end{array} \end{aligned}$$

We complete the proof.\(\square \)

Proof of Theorem 4.3

Now for an arbitrary incoherent Gaussian channel \(\Psi [t,O,N,\bar{d}]\) with \(t\le 1\),

$$\begin{aligned} \begin{array}{ll} C_{CB}^G(\Psi (\rho ))&{} = \mathrm{min}_{\psi \in \Omega _{CB}^G}\Vert \psi (\nu _\rho )-\phi (\psi (\nu _\rho ))\Vert _F+\Vert {{\pm \sqrt{t}\mathcal O}}\bar{d}\Vert _2 \\ &{} \le \mathrm{min}_{\omega ^\prime \in \Omega _T}\Vert t {\mathcal {O}}^T \nu _\rho {\mathcal {O}} + \omega I_2-\omega ^\prime I_2\Vert _F+\Vert \bar{d}\Vert _2 \ \ \ \ \ \ \ (\phi (\psi (\nu _\rho ))=\omega ^\prime I_2)\\ &{} \le \mathrm{min}_{\omega ^\prime \in \Omega _T}\Vert {\mathcal {O}}^T (t\nu _\rho + \omega I_2-\omega ^\prime I_2) {\mathcal {O}}\Vert _F+\Vert \bar{d}\Vert _2\\ &{} \le \mathrm{min}_{\omega ^\prime }\Vert t\nu _\rho + \omega I_2-(\omega ^\prime +\omega ) I_2\Vert _F+\Vert \bar{d}\Vert _2\\ &{}= \sqrt{2}|tc|+\sqrt{d_1^2+d_2^2} \\ &{} \le \sqrt{2}|c|+\sqrt{d_1^2+d_2^2}\\ &{} =C_{CB}^G(\rho ),\end{array} \end{aligned}$$

where \(\nu _\rho =\left( \begin{array}{cc} a &{} \quad c \\ c &{} \quad a \\ \end{array}\right) \). We complete the proof.\(\square \)

Proof of Theorem 4.4

Now for an arbitrary n-mode incoherent Gaussian channel \(\Psi [t_i, O_i, M, \bar{d}]\) with each \(t_i\le 1\),

$$\begin{aligned} C_{CB}^G(\Psi (\rho ))= & {} \mathrm{min}_{\psi \in \Omega _{CB}^G}\Vert \psi (\nu _\rho )\\&-\phi (\psi (\nu _\rho ))\Vert _F+\Vert {{{K}}}\bar{d}\Vert _2\\\le & {} \mathrm{min}_{\omega ^\prime \in \Omega _T^n}\Vert (P_\pi \otimes I_2)(\oplus _{i=1}^n t_i {\mathcal {O}}_i) \nu _\rho (\oplus _{i=1}^n t_i {\mathcal {O}}_i^T)(P_\pi \otimes I_2)\\&+ \oplus _i N_i-\oplus _{i=1}^n\omega ^\prime _i I_2\Vert _F+\Vert \bar{d}\Vert _2 \\= & {} \mathrm{min}_{\omega ^\prime \in \Omega _T^n}\Vert (P_\pi \otimes I_2)(\oplus _{i=1}^n t_i {\mathcal {O}}_i)( \nu _\rho \\&+ \oplus _i N_i-\oplus _{i=1}^n\omega ^\prime _i I_2)(\oplus _{i=1}^n t_i {\mathcal {O}}_i^T)(P_\pi \otimes I_2)\Vert _F+\Vert \bar{d}\Vert _2 \\= & {} \mathrm{min}_{\omega ^\prime \in \Omega _T^n}\Vert (\oplus _{i=1}^n {\mathcal {O}}_i) (\oplus _{i=1}^n t_i I_2)( \nu _\rho \\&+ \oplus _i N_i-\oplus _{i=1}^n\omega ^\prime _i I_2)(\oplus _{i=1}^n t_i I_2)(\oplus _{i=1}^n {\mathcal {O}}_i^T)\Vert _F+\Vert \bar{d}\Vert _2\\= & {} \mathrm{min}_{\omega ^\prime \in \Omega _T^n}\Vert (\oplus _{i=1}^n t_i I_2)( \nu _\rho \\&+ \oplus _i N_i-\oplus _{i=1}^n\omega ^\prime _i I_2)(\oplus _{i=1}^n t_i I_2)\Vert _F+\Vert \bar{d}\Vert _2\\= & {} \mathrm{min}_{\omega ^\prime \in \Omega _T^n}\Vert \nu _\rho \\&+ \oplus _i N_i-\oplus _{i=1}^n\omega ^\prime _i I_2\Vert _F+\Vert \bar{d}\Vert _2\\= & {} \sqrt{2}\sum _{i\ne j}^{2n}|t_it_jv_{ij}|+\sqrt{\sum _{j=1}^{2n}d_j^2}\\\le & {} \sqrt{2}\sum _{i\ne j}^{2n}|v_{ij}|+\sqrt{\sum _{j=1}^{2n}d_j^2}\\= & {} C_{CB}^G(\rho ), \end{aligned}$$

where \(\nu _\rho \) is an n-mode Gaussian state \(\rho \) with the covariance matrix \(\nu _\rho =(v_{ij})_{2n\times 2n}\) satisfying \(v_{2i-1, 2i-1}=v_{2i,2i}=a_i\ge 1\) and displacement vector \(\bar{d}= (d_1, d_2, \ldots , d_{2n})\). We complete the proof.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., He, K. Gaussian coherence-breaking channels and coherence measures. Quantum Inf Process 19, 344 (2020). https://doi.org/10.1007/s11128-020-02843-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02843-x

Keywords

Navigation