Abstract
We investigate the behaviors of quantum coherence (QC) for an atom coupled to the fluctuating electromagnetic field under the cosmic string spacetime. It is found that vacuum fluctuation, atomic polarization and nontrivial spacetime topology affect the QC behaviors. When deficit angle parameter \(\nu =1\) and atom is far away from the string, the results restore to that of free Minkowski spacetime. When atom lies in the string and is transversely polarizable, the atom seems like a closed system, and QC completely is not affected by the electromagnetic fluctuation. For nonzero atom–string distance, QC presents oscillatory behaviors as atom–string distance changes, and larger deficit angle parameter causes more prominent oscillation. In a sense, the string can protect the QC to some extent, which is similar to the boundary effect in Minkowski spacetime. Besides, this atom eventually evolves to an incoherent state, which does not appear to be related to the initial state and other various parameters; this means QC cannot keep for long evolution time in the cosmic string spacetime. In principle, atomic polarization, atom–string distance and deficit angle parameter provide us more freedom to steer the QC behaviors, which might be useful to sense various cosmic string spacetime and distinguish the cosmic string spacetime from Minkowski spacetime.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)
Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)
Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Manc̆al, T., Cheng, Y.-C., Blakenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature (London) 446, 782 (2007)
Lloyd, S.: Quantum coherence in biological systems. J. Phys: Conf. Ser. 302, 012037 (2011)
Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)
Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)
Ma, J., Zhou, Y., Yuan, X., Ma, X.: Operational interpretation of coherence in quantum key distribution. Phys. Rev. A 99, 062325 (2019)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)
Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)
Tan, K.C., Jeong, H.: Entanglement as the symmetric portion of correlated coherence. Phys. Rev. Lett. 121, 220401 (2018)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15, 3677 (2016)
Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)
Huang, Z.M., Zhang, W.: Quantum coherence behaviors for a uniformly accelerated atom immersed in fluctuating vacuum electromagnetic field with a boundary. Braz. J. Phys. 49, 161 (2019)
Huang, Z.M.: Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16, 207 (2017)
Velenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1994)
Vilenkin, A.: Cosmic strings as gravitational lenses. Astrophys. J. 282, L51 (1984)
Gott, J.R.: Gravitational lensing effects of vacuum strings-exact solutions. Astrophys. J. 288, 422 (1985)
Ford, L.H., Vilenkin, A.: A gravitational analogue of the AharonovCBohm effect. J. Phys. A: Math. Gen. 14, 2353 (1981)
Bezerra, V.B.: Gravitational analogs of the Aharonov–Bohm effect. J. Math. Phys. 30, 2895 (1989)
Audretsch, J., Economou, A.: Conical bremsstrahlung in a cosmic-string spacetime. Phys. Rev. D 44, 3774 (1991)
Saharian, A.A., Kotanjyan, A.S.: Repulsive Casimir–Polder forces from cosmic strings. Eur. Phys. J. C 71, 1765 (2011)
Cai, H., Yu, H., Zhou, W.: Spontaneous excitation of a static atom in a thermal bath in cosmic string spacetime. Phys. Rev. D 92, 084062 (2015)
Zhou, W., Yu, H.: Spontaneous excitation of a uniformly accelerated atom in the cosmic string spacetime. Phys. Rev. D 93, 084028 (2016)
Cai, H., Ren, Z.: Radiative processes of two entangled atoms in cosmic string spacetime. Class. Quantum Grav. 35, 025016 (2018)
Bakke, K., Ribeiro, L.R., Furtado, C., Nascimento, J.R.: Landau quantization for a neutral particle in the presence of topological defects. Phys. Rev. D 79, 024008 (2009)
Figueiredo Medeiros, E.R., Bezerra de Mello, E.R.: Relativistic quantum dynamics of a charged particle in cosmic string spacetime in the presence of magnetic field and scalar potential. Eur. Phys. J. C 72, 2051 (2012)
Bakke, K., Nascimento, J.R., Furtado, C.: Geometric phase for a neutral particle in the presence of a topological defect. Phys. Rev. D 78, 064012 (2008)
Cai, H., Ren, Z.: Geometric phase for a static two-level atom in cosmic string spacetime. Class. Quantum Grav. 35, 105014 (2018)
Bezerra de Mello, E.R., Saharian, A.A., Kh Grigoryan, A.: Casimir effect for parallel metallic plates in cosmic string spacetime. J. Phys. A: Math. Theor. 45, 374011 (2012)
Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)
Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)
Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)
Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)
Jin, Y., Yu, H.W.: Electromagnetic shielding in quantum metrology. Phys. Rev. A 91, 022120 (2015)
Yu, S., et al.: Experimental realization of self-guided quantum coherence freezing. Phys. Rev. A 96, 062324 (2017)
Zheng, W., et al.: Experimental demonstration of observability and operability of robustness of coherence. Phys. Rev. Lett. 120, 230504 (2018)
Ding, Z.Y., et al.: Experimental investigation of the nonlocal advantage of quantum coherence. Phys. Rev. A 100, 022308 (2019)
Acknowledgements
This work is supported by the Innovation Project of Department of Education of Guangdong Province of China (2019KTSCX188).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Huang, Z. Quantum coherence for an atom interacting with an electromagnetic field in the background of cosmic string spacetime. Quantum Inf Process 19, 370 (2020). https://doi.org/10.1007/s11128-020-02878-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02878-0