Skip to main content
Log in

Quantum Stackelberg–Bertrand duopoly

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We apply Li et al.’s “minimal” quantization rules (Phys. Lett. A 306, 73, 2002) to investigate the quantum version of the Stackelberg–Bertrand duopoly, especially how the quantum entanglement affects the second-mover advantage in the Stackelberg–Bertrand duopoly. It is found that positive quantum entanglement is more favourable to the profit of the leader and destroys the second-mover advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In order to extend the classical Cournot duopoly to the quantum domain, Li et al. make use of two single mode electromagnetic fields [6]. The reason for choosing such fields is that they have a continuous set of eigenstates. The quantization scheme requires the Hilbert space used in the quantum game to have at least the same number of distinguishable states as that of the different classical strategies. As the strategic space of the classical Cournot game is a continuum, a Hilbert space with a continuous set of orthogonal bases is required. This “minimal” quantization scheme only extends the initial state to be an entangled state while keeping the strategic space unexpanded. Accordingly, the quantum game returns to the original classical game in the absence of entanglement.

References

  1. von Neumannz, J.: Zur theorie der gesellschaftsspiele. Math. Ann. 100, 295 (1928)

    Article  MathSciNet  Google Scholar 

  2. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  3. See, for example, Bierman, H.S., Fernandez, L.: Game Theory with Economic Applications, 2nd edn. Addison-Wesley, USA (1998); Gravelle, H., Rees, R.: Macroeconomics, 2nd edn. Longman, UK (1992); Romp, G.: Game Theory: Introduction and Applications. Oxford University Press, New York, USA (1997)

  4. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82(5), 1052 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Li, H., Du, J., Massar, S.: Continuous-variable quantum games. Phys. Lett. A 306, 73 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Obsborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge (1994)

    Google Scholar 

  8. Lo, C.F., Kiang, D.: Quantum oligopoly. Europhys. Lett. 64(5), 592 (2003)

    Article  ADS  Google Scholar 

  9. Lo, C.F., Kiang, D.: Quantum Stackelberg duopoly. Phys. Lett. A 318, 333 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. Lo, C.F., Kiang, D.: Quantum Stackelberg duopoly with incomplete information. Phys. Lett. A 346, 65 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lo, C.F., Kiang, D.: Quantum Bertrand duopoly with differentiated products. Phys. Lett. A 321, 94 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. Lo, C.F., Kiang, D.: To move first or not to move first? Quantum Inf. Process. 18, 335 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. See, for example, Khan, F.S., Solmeyer, N., Balu, R., Humble, T.S.: Quantum games: a review of the history, current state, and interpretation. Quantum Inf. Process. 17, 309 (2018); Alonso-Sanz, R.: Quantum Game Simulation. Springer, Switzerland (2019)

  14. Gibbons, R.: Game Theory for Applied Economists. Princeton University Press, Princeton (1992)

    Book  Google Scholar 

  15. Dowrick, S.: Von Stackelberg and Cournot duopoly: choosing roles. RAND J. Econ. 17(2), 251 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Lo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To derive the Nash equilibrium shown in Eqs. (5) and (6) from Eqs. (3) and (4), we first determine the reaction function of the follower who is supposed to react optimally to the price chosen by the leader and maximizes his or her profit. This can be achieved by requiring

$$\begin{aligned} \frac{\partial {u_{F}}\left( p_{L},p_{F}\right) }{\partial {p_{F}}} =0\implies {\overline{p}}_{F}=\frac{1}{2}\left( a+c+bp_{L}\right) . \end{aligned}$$
(A.1)

Here, \({\overline{p}}_{F}\) is the reaction function of the follower. For different values of \(p_{L}\), the follower will optimize his or her profit with the price \({\overline{p}}_{F}\). Subsequently, against the optimal response of the follower, the leader maximizes his or her profit as follows:

$$\begin{aligned} \frac{\partial {u_{L}\left( p_{L},{\overline{p}}_{F}\right) }}{\partial {p_{L}} }=0\implies p_{L}^{*}=\frac{a\left( 2+b\right) +c\left( 2+b-b^{2}\right) }{2\left( 2-b^{2}\right) } . \end{aligned}$$
(A.2)

Substituting \(p_{L}^{*}\) into Eq. (A.1), we obtain

$$\begin{aligned} p_{F}^{*}=\frac{a\left( 4+2b-b^{2}\right) +c\left( 4+2b-b^{2}-b^{3}\right) }{4\left( 2-b^{2}\right) } . \end{aligned}$$
(A.3)

With these optimal prices their profits are then given by Eqs. (7) and (8). Moreover, their counterparts in the quantized game shown in Eqs. (18)–(21) can be derived in a similar manner.

Finally, to obtain the asymptotic limits in Eqs. (22)–(25), one can first rewrite the expressions in Eqs. (20) and (21) in terms of \(\tanh \gamma \), and then apply the limit \(\tanh \gamma \longrightarrow \pm 1\) as \(\gamma \longrightarrow \pm \infty \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, C.F., Yeung, C.F. Quantum Stackelberg–Bertrand duopoly. Quantum Inf Process 19, 373 (2020). https://doi.org/10.1007/s11128-020-02886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02886-0

Navigation