Skip to main content
Log in

Bounds on the number of mutually unbiased entangled bases

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We provide several bounds on the maximum size of MU k-Schmidt bases in \(\mathbb {C}^{d}\otimes \mathbb {C}^{d'}\). We first give some upper bounds on the maximum size of MU k-Schmidt bases in \(\mathbb {C}^{d}\otimes \mathbb {C}^{d'}\) by conversation law. Then we construct two maximally entangled mutually unbiased (MU) bases in the space \(\mathbb {C}^{2}\otimes \mathbb {C}^{3}\), which is the first example of maximally entangled MU bases in \(\mathbb {C}^d\otimes \mathbb {C}^{d'}\) when \(d\not \mid d'\). By applying a general recursive construction to this example, we are able to obtain two maximally entangled MU bases in \(\mathbb {C}^{d}\otimes \mathbb {C}^{d'}\) for infinitely many \(d,d'\) such that d is not a divisor of \(d'\). We also give some applications of the two maximally entangled MU bases in \(\mathbb {C}^{2}\otimes \mathbb {C}^{3}\). Further, we present an efficient method of constructing MU k-Schmidt bases. It solves an open problem proposed in [Y. F. Han et al., Quantum Inf. Process. 17, 58 (2018)]. Our work improves all previous results on maximally entangled MU bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Maximally entangled MU bases are called MUMEBs in [9,10,11,12]; k-Schmidt bases are called SEBks in [13, 14]; MU k-Schmidt bases are called MUSEBks in [15].

References

  1. Schwinger, J.: Unitary operator bases. Proceedings of the national academy of sciences of the United States Of America 46(4), 570 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G.: In: Proceedings of the Ieee International Conference on Computers, Systems and Signal Processing (1984)

  3. Acin, A., Jané, E., Vidal, G.: Optimal estimation of quantum dynamics. Physical Review A 64(5), 050302 (2001)

    Article  ADS  Google Scholar 

  4. Chiribella, G., D’Ariano, G., Perinotti, P., Sacchi, M.: Efficient use of quantum resources for the transmission of a reference frame. Physical review letters 93(18), 180503 (2004)

    Article  ADS  Google Scholar 

  5. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Physical review letters 94(14), 140501 (2005)

    Article  ADS  Google Scholar 

  6. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Optimal cloning of unitary transformation. Physical review letters 101(18), 180504 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Scott, A.J.: Optimizing quantum process tomography with unitary \(2\)-designs. Journal of Physics A: Mathematical and Theoretical 41(5), 055308 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. Shaari, J.S., Nasir, R.N., Mancini, S.: Mutually unbiased unitary bases. Physical Review A 94(5), 052328 (2016)

    Article  ADS  Google Scholar 

  9. Tao, Y.-H., Nan, H., Zhang, J., Fei, S.-M.: Mutually unbiased maximally entangled bases in \(\mathbb{C}^{d}\otimes \mathbb{C}^{kd}\). Quantum Information Processing 14(6), 2291–2300 (2015)

    Article  ADS  Google Scholar 

  10. Xu, D.: Construction of mutually unbiased maximally entangled bases through permutations of hadamard matrices. Quantum Information Processing 16, 1–11 (2017)

    Article  MathSciNet  Google Scholar 

  11. Liu, J., Yang, M., Feng, K.: Mutually unbiased maximally entangled bases in \(\mathbb{C}^{d}\otimes \mathbb{C}^{d}\). Quantum Information Processing 16(6), 159 (2017)

    Article  ADS  Google Scholar 

  12. Xu, D.: Trace-2 excluded subsets of special linear groups over finite fields and mutually unbiased maximally entangled bases. Quantum Information Processing 18(7), 213 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. Guo, Y., Du, S., Li, X., Wu, S.: Entangled bases with fixed schmidt number. Journal of Physics A: Mathematical and Theoretical 48(24), 245301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Li, M.-S., Wang, Y.-L.: Construction of special entangled basis based on generalized weighing matrices. Journal of Physics A: Mathematical and Theoretical 52(37), 375303 (2019)

    Article  MathSciNet  Google Scholar 

  15. Han, Y.-F., Zhang, G.-J., Yong, X.-L., Xu, L.-S., Tao, Y.-H.: Mutually unbiased special entangled bases with schmidt number \(2\) in \(\mathbb{C}^{3}\otimes \mathbb{C}^{4k}\). Quantum Information Processing 17(3), 58 (2018)

    Article  ADS  Google Scholar 

  16. Zhang, J., Tao, Y.-H., Nan, H., Fei, S.-M.: Construction of mutually unbiased bases in \(\mathbb{C}^{d}\otimes \mathbb{C}^{2^ld^{\prime }}\). Quantum Information Processing 14(7), 2635–2644 (2015)

    Article  ADS  Google Scholar 

  17. Cheng, X., Shang, Y.: New bounds of mutually unbiased maximally entangled bases in \(\mathbb{C}^{d}\otimes \mathbb{C}^{kd}\). Quantum Information & Computation 18(13–14), 1152–1164 (2018)

    MathSciNet  Google Scholar 

  18. Shi, F., Zhang, X., Guo, Y.: Constructions of unextendible entangled bases. Quantum Information Processing 18(10), 324 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Klappenecker, A., Rötteler, M.: Constructions of mutually unbiased bases. In: International Conference on Finite Fields and Applications. Springer, Berlin (2003), pp. 137–144

  20. Wocjan, P., Beth, T.: New construction of mutually unbiased bases in square dimensions,” arXiv preprint arXiv:quant-ph/0407081, (2004)

  21. Wieśniak, M., Paterek, T., Zeilinger, A.: Entanglement in mutually unbiased bases. New Journal of Physics 13(5), 053047 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  22. Weiner, Mihály, : A gap for the maximum number of mutually unbiased bases. Proc. Am. Math. Soc. 141(6), 1963–1969 (2013)

  23. Boykin, P.O., Sitharam, M., Tiep, P.H., Wocjan, P.: Mutually unbiased bases and orthogonal decompositions of lie algebras,” arXiv preprint arXiv:quant-ph/0506089 (2005)

  24. Brierley, S., Weigert, S.: Maximal sets of mutually unbiased quantum states in dimension 6. Phys. Rev. A 78, 042312 (Oct 2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Brierley, S., Weigert, S.: Constructing mutually unbiased bases in dimension six. Phys. Rev. A 79, 052316 (May 2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Jaming, P., Matolcsi, M., Móra, P., Szöllösi, F., Weiner, M.: A generalized pauli problem and an infinite family of mub-triplets in dimension 6. Journal of Physics A: Mathematical and Theoretical 42(24), 245305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Brierley, S.: Mutually Unbiased Bases in Low Dimensions, ser. Ph.D thesis, University of York, Department of Mathematics (2009)

  28. Brierley, S., Weigert, S.: Mutually Unbiased Bases and Semi-definite Programming. Journal of Physics: Conference Series 254, 012008 (Jun. 2010)

    Article  Google Scholar 

  29. Durt, T., Englert, B.-G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. International journal of quantum information 8(04), 535–640 (2010)

    Article  Google Scholar 

  30. McNulty, D., Weigert, S.: On the impossibility to extend triples of mutually unbiased product bases in dimension six. International Journal of Quantum Information 10(05), 1250056 (2012)

    Article  MathSciNet  Google Scholar 

  31. McNulty, D., Weigert, S.: All mutually unbiased product bases in dimension 6. Journal of Physics A: Mathematical and Theoretical 45(13), 135307 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  32. Raynal, P., Lü, X., Englert, B.-G.: Mutually unbiased bases in six dimensions: The four most distant bases. Phys. Rev. A 83, 062303 (Jun 2011)

    Article  ADS  Google Scholar 

  33. Szöllösi, F.: Complex hadamard matrices of order 6: a four-parameter family. Journal of the London Mathematical Society 85(3), 616–632 (2012)

    Article  MathSciNet  Google Scholar 

  34. Goyeneche, D.: Mutually unbiased triplets from non-affine families of complex hadamard matrices in dimension 6. Journal of Physics A: Mathematical and Theoretical 46(10), 105301 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. McNulty, D., Weigert, S.: The limited role of mutually unbiased product bases in dimension 6. Journal of Physics A: Mathematical and Theoretical 45(10), 102001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  36. Maxwell, A.S., Brierley, S.: On properties of Karlsson Hadamards and sets of mutually unbiased bases in dimension six. Linear Algebra and its Applications 466, 296–306 (2015)

    Article  MathSciNet  Google Scholar 

  37. McNulty, D., Pammer, B., Weigert, S.: Mutually unbiased product bases for multiple qudits. J. Math. Phys. 57(3), 032202 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. Chen, L., Yu, L.: Product states and schmidt rank of mutually unbiased bases in dimension six. Journal of Physics A: Mathematical and Theoretical 50(47), 475304 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. Chen, L., Yu, L.: Mutually unbiased bases in dimension six containing a product-vector basis. Quantum Information Processing 17(8), 198 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  40. Liang, M., Hu, M., Chen, L., Chen, X.: The \(h_2\)-reducible matrix in four six-dimensional mutually unbiased bases. Quantum Information Processing 18(11), 352 (2019)

    Article  ADS  Google Scholar 

  41. Xu, D.: Construction of mutually unbiaesd maximally entangled bases in \({\mathbb{C}}^{2^s}\otimes {\mathbb{C}}^{2^s}\) by using Galois rings. Quantum Inf. Process. 19(6), 175 (2020)

    Article  ADS  Google Scholar 

  42. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Annals of Physics 191(2), 363–381 (1989)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We appreciate the anonymous referee’s suggestion that points out an early version of Theorem 4. FS and XZ were supported by NSFC under Grant No. 11771419, the Fundamental Research Funds for the Central Universities, and Anhui Initiative in Quantum Information Technologies under Grant No. AHY150200. LC and YS were supported by the NNSF of China (Grant No. 11871089), and the Fundamental Research Funds for the Central Universities (Grant No. ZG216S2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiande Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A:The proof of Lemma 10

Proof

We write U and V in the matrix form as follows:

$$\begin{aligned} U= \left( \begin{matrix} {\frac{1}{\sqrt{2}}} &{} \quad \frac{1}{\sqrt{2}} &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad \frac{1}{\sqrt{2}} &{} \quad \frac{1}{\sqrt{2}} &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{}\quad 0 &{}\quad 0 &{} \quad \frac{1}{\sqrt{2}} &{} \quad \frac{1}{\sqrt{2}} \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad \frac{1}{\sqrt{2}} &{} \quad -\frac{1}{\sqrt{2}} \\ {\frac{1}{\sqrt{2}}} &{} \quad -\frac{1}{\sqrt{2}} &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad \frac{1}{\sqrt{2}} &{} \quad -\frac{1}{\sqrt{2}} &{} \quad 0 &{} \quad 0 \end{matrix} \right) , \end{aligned}$$
(A1)

and

$$\begin{aligned} V&:= \left( \begin{matrix} |v_1\rangle&|v_2\rangle&|v_3\rangle&|v_4\rangle&|v_5\rangle&|v_6\rangle \end{matrix} \right) \nonumber \\&= \left( \begin{matrix} {\frac{1}{\sqrt{6}}} &{} \quad {\frac{1}{\sqrt{6}}} &{} \quad 0 &{} \quad 0 &{} \quad {\frac{\sqrt{2}}{\sqrt{6}}} &{} \quad -{\frac{\sqrt{2}}{\sqrt{6}}} \\ {\frac{\sqrt{2}}{\sqrt{6}}} &{} \quad -{\frac{\sqrt{2}}{\sqrt{6}}} &{} \quad {\frac{1}{\sqrt{6}}} &{} \quad {\frac{1}{\sqrt{6}}} &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad {\frac{\sqrt{2}}{\sqrt{6}}} &{} \quad -{\frac{\sqrt{2}}{\sqrt{6}}} &{} \quad {\frac{1}{\sqrt{6}}} &{} \quad {\frac{1}{\sqrt{6}}} \\ -{\frac{\sqrt{2}}{\sqrt{6}}}i &{} \quad -{\frac{\sqrt{2}}{\sqrt{6}}}i &{} \quad 0 &{} \quad 0 &{} \quad {\frac{i}{\sqrt{6}}} &{} \quad -{\frac{i}{\sqrt{6}}} \\ {\frac{i}{\sqrt{6}}} &{} \quad -\frac{i}{\sqrt{6}} &{} \quad -\frac{\sqrt{2}}{\sqrt{6}}i &{} \quad -\frac{\sqrt{2}}{\sqrt{6}}i &{} \quad 0 &{} \quad 0 \\ 0 &{}\quad 0 &{} \quad {\frac{i}{\sqrt{6}}} &{} \quad -\frac{i}{\sqrt{6}} &{} \quad -\frac{\sqrt{2}}{\sqrt{6}}i &{} \quad -\frac{\sqrt{2}}{\sqrt{6}}i \end{matrix} \right) . \end{aligned}$$
(A2)

Let

$$\begin{aligned} X= \left( \begin{matrix} |x_1\rangle&|x_2\rangle&|x_3\rangle&|x_4\rangle&|x_5\rangle&|x_6\rangle \end{matrix} \right) , \end{aligned}$$
(A3)

where \(|x_j\rangle \)’s are vectors in \(\mathbb {C}^6\), and \(|x_j\rangle \ne |v_1\rangle ~\forall j\). Suppose U and X are two MUBs which can be extended to four MUBs in \(\mathbb {C}^6\). If \(|x_1\rangle =|v_2\rangle \), then we define

$$\begin{aligned} P=\mathop {\mathrm{diag}}(1,-1,1,1,-1,1),\quad Q=\left( \begin{matrix} 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{}\quad 0 &{} \quad 0 &{} \quad -1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -1 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 \end{matrix} \right) . \end{aligned}$$
(A4)

One can verify \(PUQ=U\), and thus PUQ and PX are two MUBs which can be extended to four MUBs in \(\mathbb {C}^6\). Since \(P|x_1\rangle =P|v_2\rangle =|v_1\rangle \), we have a contradiction with the hypothesis that X cannot have \(|v_1\rangle \). So we have shown that \(|x_1\rangle \) cannot be \(|v_2\rangle \). Then up to a column permutation of X, we have \(|x_j\rangle \ne |v_2\rangle ~\forall j\). Using the same idea, it suffices to exclude two cases, namely \(|x_1\rangle =|v_3\rangle \) and \(|x_1\rangle =|v_5\rangle \), in order to prove that X cannot have any column vector of V. If \(|x_1\rangle =|v_3\rangle \), then we define

$$\begin{aligned} P=\left( \begin{matrix} 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 \\ 0 &{}\quad 0 &{} \quad 0 &{} \quad 0 &{} \quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad -1 &{} \quad 0 &{}\quad 0 &{} \quad 0 &{} \quad 0 \\ 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \end{matrix} \right) ,\quad Q=\left( \begin{matrix} 0 &{} \quad 0 &{} \quad 0 &{} \quad -1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 1 &{}\quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ -1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad -1 \end{matrix} \right) . \end{aligned}$$
(A5)

A straightforward computing yields that \(PUQ=U\), and \((-i)P|v_3\rangle =|v_1\rangle \). So PUQ and \((-i)PX\) are two MUBs that can be extended to four MUBs in \(\mathbb {C}^6\). Since \((-i)P|x_1\rangle =(-i)P|v_3\rangle =|v_1\rangle \), we have a contradiction with the hypothesis that X cannot have \(|v_1\rangle \). Hence we exclude \(|x_1\rangle =|v_3\rangle \). If \(|x_1\rangle =|v_5\rangle \) we may choose

$$\begin{aligned} P=\left( \begin{matrix} 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 \end{matrix} \right) ,\quad Q=\left( \begin{matrix} 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 \\ 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \end{matrix} \right) . \end{aligned}$$
(A6)

A straightforward computing yields that \(PUQ=U\), and \(P|v_5\rangle =|v_1\rangle \). Similarly we can exclude \(|x_1\rangle =|v_5\rangle \). Therefore, X cannot have any column vector of V. This completes the proof. \(\square \)

Appendix B:\(M_3(6,6)\ge 3\)

The following three maximally entangled MU bases in \(\mathbb {C}^{3}\otimes \mathbb {C}^{3}\) are constructed from [8].

$$\begin{aligned} \mathcal {S}_{1}&=\left\{ \frac{1}{3\sqrt{3}}\left( \begin{matrix} w+2 &{} \quad w+2 &{} \quad w+2\\ 2w^{2}+1 &{} \quad w+2 &{} \quad w^{2}+2w\\ w^{2}+2w &{} \quad w+2 &{} \quad 2w^{2}+1 \end{matrix}\right) , \ \frac{1}{3\sqrt{3}}\left( \begin{matrix} w+2 &{} \quad w^{2}+2w &{} \quad 2w^{2}+1\\ 2w^{2}+1 &{}\quad w^{2}+2w &{} \quad w+2\\ w^{2}+2w &{}\quad w^{2}+2w &{}\quad w^{2}+2w \end{matrix} \right) ,\right. \\&\quad \frac{1}{3\sqrt{3}}\left( \begin{matrix} w+2 &{}\quad 2w^{2}+1 &{}\quad w^{2}+2w\\ 2w^{2}+1 &{} \quad 2w^{2}+1 &{}\quad 2w^{2}+1 \\ w^{2}+2w &{}\quad 2w^{2}+1 &{} \quad w+2 \end{matrix} \right) ,\\&\quad \frac{1}{3\sqrt{3}}\left( \begin{matrix} w+2 &{} \quad w+2 &{}\quad w+2\\ w+2 &{} \quad w^{2}+2w &{}\quad 2w^{2}+1\\ w+2 &{} \quad 2w^{2}+1 &{}\quad w^{2}+2w \end{matrix}\right) , \frac{1}{3\sqrt{3}}\left( \begin{matrix} w+2 &{}\quad w^{2}+2w &{}\quad 2w^{2}+1\\ w+2 &{}\quad 2w^{2}+1 &{}\quad w^{2}+2w\\ w+2 &{}\quad w+2 &{}\quad w+2 \end{matrix} \right) , \\&\quad \frac{1}{3\sqrt{3}}\left( \begin{matrix} w+2 &{}\quad 2w^{2}+1 &{}\quad w^{2}+2w\\ w+2 &{}\quad w+2 &{}\quad w+2 \\ w+2 &{}\quad w^{2}+2w &{}\quad 2w^{2}+1 \end{matrix} \right) ,\\&\quad \frac{1}{3\sqrt{3}}\left( \begin{matrix} w+2 &{}\quad w+2 &{}\quad w+2\\ w^{2}+2w &{}\quad 2w^{2}+1 &{}\quad w+2\\ 2w^{2}+1 &{}\quad w^{2}+2w &{}\quad w+2 \end{matrix}\right) , \ \frac{1}{3\sqrt{3}}\left( \begin{matrix} w+2 &{}\quad w^{2}+2w &{}\quad 2w^{2}+1 \\ w^{2}+2w &{}\quad w+2 &{}\quad 2w^{2}+1\\ 2w^{2}+1 &{}\quad 2w^{2}+1 &{}\quad 2w^{2}+1 \end{matrix} \right) ,\\&\quad \left. \frac{1}{3\sqrt{3}}\left( \begin{matrix} w+2 &{}\quad 2w^{2}+1 &{}\quad w^{2}+2w\\ w^{2}+2w &{}\quad w^{2}+2w &{}\quad w^{2}+2w\\ 2w^{2}+1 &{}\quad w+2 &{}\quad w^{2}+2w \end{matrix} \right) \right\} ,\\ \mathcal {S}_{2}&=\left\{ \frac{1}{3\sqrt{3}}\left( \begin{matrix} 0 &{} \quad 3w^{2} &{} \quad 0\\ 3w &{} \quad 0 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 3 \end{matrix}\right) , \ \frac{1}{3\sqrt{3}}\left( \begin{matrix} 0 &{} \quad 3 &{} \quad 0\\ 3w &{} \quad 0 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 3w^{2} \end{matrix} \right) , \ \frac{1}{3\sqrt{3}}\left( \begin{matrix} 0 &{} \quad 3w &{} \quad 0\\ 3w &{} \quad 0 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 3w \end{matrix} \right) \right. ,\\&\quad \frac{1}{3\sqrt{3}}\left( \begin{matrix} 3w^{2} &{} \quad 0 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 3w\\ 0 &{} \quad 3 &{} \quad 0 \end{matrix}\right) , \ \frac{1}{3\sqrt{3}}\left( \begin{matrix} 3w^{2}&{} \quad 0 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 3\\ 0 &{}\quad 3w &{} \quad 0 \end{matrix} \right) ,\\&\quad \frac{1}{3\sqrt{3}}\left( \begin{matrix} 3w^{2} &{} \quad 0 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 3w^{2}\\ 0 &{} \quad 3w^{2} &{} \quad 0 \end{matrix} \right) , \frac{1}{3\sqrt{3}}\left( \begin{matrix} 0 &{} \quad 0 &{} \quad 3w^{2}\\ 0 &{} \quad 3w &{} \quad 0\\ 3 &{} \quad 0 &{} \quad 0 \end{matrix}\right) , \ \frac{1}{3\sqrt{3}}\left( \begin{matrix} 0 &{}0 &{}3w\\ 0 &{}3w^{2} &{} 0\\ 3 &{}0 &{} 0 \end{matrix} \right) ,\\&\quad \left. \frac{1}{3\sqrt{3}}\left( \begin{matrix} 0 &{} \quad 0 &{} \quad 3\\ 0 &{}\quad 3 &{}\quad 0\\ 3 &{}\quad 0 &{} \quad 0 \end{matrix} \right) \right\} ,\\ \mathcal {S}_{3}&=\left\{ \frac{1}{\sqrt{3}}\left( \begin{matrix} 1 &{} \quad 0 &{} \quad 0\\ 0 &{} \quad 1 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 1 \end{matrix}\right) , \ \frac{1}{\sqrt{3}}\left( \begin{matrix} 1 &{} \quad 0 &{} \quad 0\\ 0 &{} \quad w &{} \quad 0\\ 0 &{} \quad 0 &{} \quad w^{2} \end{matrix} \right) , \ \frac{1}{\sqrt{3}}\left( \begin{matrix} 1 &{} \quad 0 &{} \quad 0\\ 0 &{} \quad w^{2} &{} \quad 0\\ 0 &{} \quad 0 &{} \quad w \end{matrix} \right) ,\right. \\&\quad \frac{1}{\sqrt{3}}\left( \begin{matrix} 0 &{} \quad 0 &{} \quad 1\\ 1 &{} \quad 0 &{} \quad 0\\ 0 &{} \quad 1 &{} \quad 0 \end{matrix}\right) , \ \frac{1}{\sqrt{3}}\left( \begin{matrix} 0 &{} \quad 0 &{} \quad w^{2}\\ 1 &{} \quad 0 &{} \quad 0\\ 0 &{} \quad w &{} \quad 0 \end{matrix} \right) , \frac{1}{\sqrt{3}}\left( \begin{matrix} 0 &{} \quad 0 &{} \quad w\\ 1 &{} \quad 0 &{} \quad 0\\ 0 &{} \quad w^{2} &{} \quad 0 \end{matrix} \right) ,\\&\quad \left. \frac{1}{\sqrt{3}}\left( \begin{matrix} 0 &{} \quad 1 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 1\\ 1 &{} \quad 0 &{} \quad 0 \end{matrix}\right) , \ \frac{1}{\sqrt{3}}\left( \begin{matrix} 0 &{}\quad w &{} \quad 0\\ 0 &{}\quad 0 &{} \quad w^{2}\\ 1 &{}\quad 0 &{} \quad 0 \end{matrix} \right) , \ \frac{1}{\sqrt{3}}\left( \begin{matrix} 0 &{}w^{2} &{}0\\ 0 &{}0 &{}w\\ 1 &{}0 &{} 0 \end{matrix} \right) \right\} . \end{aligned}$$

For three MUBs in \(\mathbb {C}^{2}\), we choose

$$\begin{aligned} \mathcal {T}_{1}=\{(0,1),(1,0)\}, \ \mathcal {T}_{2}=\left\{ \frac{1}{\sqrt{2}}(1,1),\frac{1}{\sqrt{2}}(1,-1)\right\} , \ \mathcal {T}_{3}=\left\{ \frac{1}{\sqrt{2}}(1,i),\frac{1}{\sqrt{2}}(1,-i)\right\} . \end{aligned}$$

Then \(\{\mathcal {S}_{1}\otimes \mathcal {T}_{1}, \mathcal {S}_{2}\otimes \mathcal {T}_{2},\mathcal {S}_{3}\otimes \mathcal {T}_{3}\}\) is a set of three maximally entangled MU bases in \(\mathbb {C}^{3}\otimes \mathbb {C}^{6}\) by Eq. (23), and \(\{\mathcal {T}_{1}^{\mathrm {T}}\otimes \mathcal {S}_{1}\otimes \mathcal {T}_{1}, \mathcal {T}_{2}^{\mathrm {T}}\otimes \mathcal {S}_{2}\otimes \mathcal {T}_{2},\mathcal {T}_{3}^{\mathrm {T}}\otimes \mathcal {S}_{3}\otimes \mathcal {T}_{3}\}\) is a set of three MU 3-Schmidt bases in \(\mathbb {C}^{6}\otimes \mathbb {C}^{6}\) by Eq. (24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Shen, Y., Chen, L. et al. Bounds on the number of mutually unbiased entangled bases. Quantum Inf Process 19, 383 (2020). https://doi.org/10.1007/s11128-020-02890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02890-4

Keywords

Navigation