Skip to main content
Log in

Dynamical characteristic of entropic uncertainty relation in the long-range Ising model with an arbitrary magnetic field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we explore the quantum-memory-assisted entropic uncertainty relation (QMA-EUR) and the entanglement concurrence for the long-range Ising (LRI) model in the presence of an arbitrary magnetic field. The long-range interaction is considered as type of the Calogero–Moser interaction that is inversely proportional to the square of the distance between the spins. It is shown that the measurement’s uncertainty and the entanglement concurrence are extremely sensitive to the effects of the distance between spins, the magnitude, and the direction of the external magnetic field. The evaluation of the QMA-EUR is fully related to the entanglement concurrence in case of the LRI model. At larger distances between the spins, there is inflation in the measuring uncertainty due to the fragile entanglement between them. The evolutions of the entanglement and the uncertainty show only similar dynamical characteristics in antiferromagnetic and ferromagnetic frames when the magnetic field is perpendicular to the z-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    ADS  MATH  Google Scholar 

  2. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34(1), 163 (1929)

    ADS  Google Scholar 

  3. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50(9), 631 (1983)

    ADS  MathSciNet  Google Scholar 

  4. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35(10), 3070 (1987)

    ADS  MathSciNet  Google Scholar 

  5. Maassen, H., Uffink, J.B.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60(12), 1103 (1988)

    ADS  MathSciNet  Google Scholar 

  6. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6(9), 659 (2010)

    Google Scholar 

  7. Prevedel, R., Hamel, D.R., Colbeck, R., Fisher, K., Resch, K.J.: Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nat. Phys. 7(10), 757 (2011)

    Google Scholar 

  8. Li, C.-F., Xu, J.-S., Xu, X.-Y., Li, K., Guo, G.-C.: Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 7(10), 752 (2011)

    Google Scholar 

  9. Coles, P.J., Piani, M.: Improved entropic uncertainty relations and information exclusion relations. Phys. Rev. A 89(2), 022112 (2014)

    ADS  Google Scholar 

  10. Schneeloch, J., Broadbent, C.J., Walborn, S.P., Cavalcanti, E.G., Howell, J.C.: Einstein–Podolsky–Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 87(6), 062103 (2013)

    ADS  Google Scholar 

  11. Hu, M.-L., Fan, H.: Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs. Phys. Rev. A 86(3), 032338 (2012)

    ADS  Google Scholar 

  12. Hu, M.-L., Fan, H.: Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A 88(1), 014105 (2013)

    ADS  Google Scholar 

  13. Karpat, G., Piilo, J., Maniscalco, S.: Controlling entropic uncertainty bound through memory effects. Europhys. Lett. EPL 111(5), 50006 (2015)

    ADS  Google Scholar 

  14. Pati, A.K., Wilde, M.M., Devi, A.U., Rajagopal, A.: Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86(4), 042105 (2012)

    ADS  Google Scholar 

  15. Pramanik, T., Mal, S., Majumdar, A.S.: Lower bound of quantum uncertainty from extractable classical information. Quantum Inf. Process. 15(2), 981–999 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Wang, D., Ming, F., Huang, A.-J., Sun, W.-Y., Ye, L.: Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals. Laser Phys. Lett. 14(9), 095204 (2017)

    ADS  Google Scholar 

  17. Wang, D., Ming, F., Hu, M.L., Ye, L.: Quantum-memory-assisted entropic uncertainty relations. Annalen der Physik 531(10), 1900124 (2019)

    ADS  MathSciNet  Google Scholar 

  18. Yang, Y.-Y., Sun, W.-Y., Shi, W.-N., Ming, F., Wang, D., Ye, L.: Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions. Front. Phys. 14(3), 31601 (2019)

    ADS  Google Scholar 

  19. Wang, D., Shi, W.-N., Hoehn, R.D., Ming, F., Sun, W.-Y., Ye, L., Kais, S.: Probing entropic uncertainty relations under a two-atom system coupled with structured bosonic reservoirs. Quantum Inf. Process. 17(12), 335 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Ming, F., Wang, D., Shi, W.-N., Huang, A.-J., Sun, W.-Y., Ye, L.: Entropic uncertainty relations in the Heisenberg XXZ model and its controlling via filtering operations. Quantum Inf. Process. 17(4), 89 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Ming, F., Wang, D., Shi, W.-N., Huang, A.-J., Du, M.-M., Sun, W.-Y., Ye, L.: Exploring uncertainty relation and its connection with coherence under the Heisenberg spin model with the Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 17(10), 267 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Wang, D., Huang, A., Ming, F., Sun, W., Lu, H., Liu, C., Ye, L.: Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field. Laser Phys. Lett. 14(6), 065203 (2017)

    ADS  Google Scholar 

  23. Huang, A.-J., Wang, D., Wang, J.-M., Shi, J.-D., Sun, W.-Y., Ye, L.: Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field. Quantum Inf. Process. 16(8), 204 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Zhang, Z.-Y., Wei, D., Liu, J.-M.: Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence. Laser Phys. Lett. 15(6), 065207 (2018)

    ADS  Google Scholar 

  25. Huang, Z.: Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii–Moriya interaction. Laser Phys. Lett. 15(2), 025203 (2018)

    ADS  Google Scholar 

  26. Guo, Y.-N., Fang, M.-F., Zeng, K.: Entropic uncertainty relation in a two-qutrit system with external magnetic field and Dzyaloshinskii–Moriya interaction under intrinsic decoherence. Quantum Inf. Process. 17(7), 187 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Zheng, X., Zhang, G.-F.: The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski–Moriya interaction. Quantum Inf. Process. 16(1), 1 (2017)

    ADS  MATH  Google Scholar 

  28. Zhao, L.-M., Zhang, G.-F.: Entangled quantum Otto heat engines based on two-spin systems with the Dzyaloshinski–Moriya interaction. Quantum Inf. Process. 16(9), 216 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Gaudiano, M., Osenda, O., Raggio, G.: Two-spin-subsystem entanglement in spin-1/2 rings with long-range interactions. Phys. Rev. A 77(2), 022109 (2008)

    ADS  Google Scholar 

  30. Giuliano, D., Sindona, A., Falcone, G., Plastina, F., Amico, L.: Entanglement in a spin system with inverse square statistical interaction. New J. Phys. 12(2), 025022 (2010)

    ADS  MATH  Google Scholar 

  31. Britton, J.W., Sawyer, B.C., Keith, A.C., Wang, C.-C.J., Freericks, J.K., Uys, H., Biercuk, M.J., Bollinger, J.J.: Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484(7395), 489 (2012)

    ADS  Google Scholar 

  32. Koffel, T., Lewenstein, M., Tagliacozzo, L.: Entanglement entropy for the long-range Ising chain in a transverse field. Phys. Rev. Lett. 109(26), 267203 (2012)

    ADS  Google Scholar 

  33. Li, B., Wang, Y.-S.: Quantum correlations in a long range interaction spin chain. Physica B 407(1), 77–83 (2012)

    ADS  Google Scholar 

  34. Islam, R., Senko, C., Campbell, W., Korenblit, S., Smith, J., Lee, A., Edwards, E., Wang, C.-C., Freericks, J., Monroe, C.: Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340(6132), 583–587 (2013)

    ADS  Google Scholar 

  35. Hauke, P., Tagliacozzo, L.: Spread of correlations in long-range interacting quantum systems. Phys. Rev. Lett. 111(20), 207202 (2013)

    ADS  Google Scholar 

  36. Richerme, P., Gong, Z.-X., Lee, A., Senko, C., Smith, J., Foss-Feig, M., Michalakis, S., Gorshkov, A.V., Monroe, C.: Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511(7508), 198 (2014)

    ADS  Google Scholar 

  37. Jurcevic, P., Lanyon, B.P., Hauke, P., Hempel, C., Zoller, P., Blatt, R., Roos, C.F.: Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511(7508), 202 (2014)

    ADS  Google Scholar 

  38. Vodola, D., Lepori, L., Ercolessi, E., Pupillo, G.: Long-range Ising and Kitaev models: phases, correlations and edge modes. New J. Phys. 18(1), 015001 (2015)

    Google Scholar 

  39. Fey, S., Schmidt, K.P.: Critical behavior of quantum magnets with long-range interactions in the thermodynamic limit. Phys. Rev. B 94(7), 075156 (2016)

    ADS  Google Scholar 

  40. Sun, G.: Fidelity susceptibility study of quantum long-range antiferromagnetic Ising chain. Phys. Rev. A 96(4), 043621 (2017)

    ADS  Google Scholar 

  41. Jaschke, D., Maeda, K., Whalen, J.D., Wall, M.L., Carr, L.D.: Critical phenomena and Kibble–Zurek scaling in the long-range quantum Ising chain. New J. Phys. 19(3), 033032 (2017)

    ADS  Google Scholar 

  42. Han, S.D., Tüfekçi, T., Spiller, T.P., Aydiner, E.: Entanglement in (1/2, 1) mixed-spin XY model with long-range interaction. Int. J. Theor. Phys. 56(5), 1474–1483 (2017)

    MATH  Google Scholar 

  43. Haldane, F.: Exact Jastrow–Gutzwiller resonating-valence-bond ground state of the spin-1 2 antiferromagnetic Heisenberg chain with 1/r 2 exchange. Phys. Rev. Lett. 60(7), 635 (1988)

    ADS  Google Scholar 

  44. Shastry, B.S.: Exact solution of an S = 1/2 Heisenberg antiferromagnetic chain with long-ranged interactions. Phys. Rev. Lett. 60(7), 639 (1988)

    ADS  Google Scholar 

  45. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    ADS  MATH  Google Scholar 

  46. Obada, A.-S., Al-Kadar, G.A., Faramawy, F., Youssef, A.: Entanglement of the thermal state of an anisotropic XYZ spin chain in an inhomogeneous constant magnetic field. Chin. Phys. Lett. 29(3), 030301 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Abdelghany.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

As mentioned above, the post-measurement state takes the form

$$\begin{aligned} \rho _{XB} = \sum \nolimits _x {(\left| {\psi _x } \right\rangle \left\langle {\psi _x } \right| \otimes \mathbf{{I}})} \rho _{AB} (\left| {\psi _x } \right\rangle \left\langle {\psi _x } \right| \otimes \mathbf{{I}}), \end{aligned}$$
(A1)

where \( X \in \left\{ {P,Q} \right\} \) and , \( {\left| {\psi _x } \right\rangle } \) are the eigenvectors of X. By replacing the incompatibility P and Q by the spin-1/2 operators \( \sigma _x \) and \( \sigma _z \), the post-measurement states, \( \rho _{\sigma _x B} \) and \( \rho _{\sigma _z B} \) and also the reduced density matrix \( \rho _B \) of the quantum memory B can be derived as

$$\begin{aligned} \rho _{\sigma _x B}= & {} \left( {\begin{array}{*{20}c} {\frac{1}{4}} &{} \mathcal{K} &{} \mathcal{K} &{} {\frac{{\mathcal{G}_ - - \mathcal{L}_ - }}{2}} \\ \mathcal{K} &{} {\frac{1}{4}} &{} {\frac{{\mathcal{G}_ - - \mathcal{L}_ - }}{2}} &{} \mathcal{K} \\ \mathcal{K} &{} {\frac{{\mathcal{G}_ - - \mathcal{L}_ - }}{2}} &{} {\frac{1}{4}} &{} \mathcal{K} \\ {\frac{{\mathcal{G}_ - - \mathcal{L}_ - }}{2}} &{} \mathcal{K} &{} \mathcal{K} &{} {\frac{1}{4}} \\ \end{array}} \right) , \nonumber \\ \rho _{\sigma _z B}= & {} \left( {\begin{array}{*{20}c} {\mathcal{G}_ + } &{} \mathcal{K} &{} 0 &{} 0 \\ \mathcal{K} &{} {\mathcal{L}_ + } &{} 0 &{} 0 \\ 0 &{} 0 &{} {\mathcal{L}_ + } &{} \mathcal{K} \\ 0 &{} 0 &{} \mathcal{K} &{} {\mathcal{G}_ + } \\ \end{array}} \right) , \nonumber \\ \rho _B= & {} \left( {\begin{array}{*{20}c} {\frac{1}{2}} &{} {2\mathcal{K}} \\ {2\mathcal{K}} &{} {\frac{1}{2}} \\ \end{array}} \right) . \end{aligned}$$
(A2)

After some calculations one can get:

$$\begin{aligned} \mathcal{X}_{1,2}= & {} \frac{{\cosh \alpha _1 }}{Z} \pm 2\mathcal{K},\,\,\,\,\,\,\,\,\,\,\,\mathcal{X}_{3,4} = \frac{{\cosh \alpha _2 }}{Z}, \end{aligned}$$
(A3)
$$\begin{aligned} \mathcal{Z}_{1,2}= & {} \frac{{1 - 2\sqrt{\varpi }}}{4},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\mathcal{Z}_{3,4} = \frac{{1 + 2\sqrt{\varpi }}}{4}, \end{aligned}$$
(A4)
$$\begin{aligned} \mathcal{B}_{1}= & {} \frac{{1 - 4\mathcal{K}}}{2},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\mathcal{B}_{2} = \frac{{1 + 4\mathcal{K}}}{2}. \end{aligned}$$
(A5)

where \( \mathcal{X}_i \), \( \mathcal{Z}_i \) and \( \mathcal{B}_i \) are the eigenvalues of \({\rho _{\sigma _x B} } \), \({\rho _{\sigma _z B} } \) and \( \rho _B \), respectively, and \( \varpi = \left( {\mathcal{G}_ + - \mathcal{L}_ + } \right) ^2 + 4\mathcal{K}^2 \). On the other hand, the eigenvalues of the density matrix, Eq. (8), are

$$\begin{aligned} \mathcal{D}_{1,2} = \frac{{\exp \left( { \pm \alpha _1 } \right) }}{Z},\,\,\,\,\,\,\,\,\,\,\,\,\mathcal{D}_{3,4} = \frac{{\exp \left( { \pm \alpha _2 } \right) }}{Z}. \end{aligned}$$
(A6)

It is well known that for an arbitrary state, \( \rho \), the von Neumann entropy can be expressed as \( S(\rho ) = - \sum \nolimits _i \Omega _i \log _2 \Omega _i \) where \( \Omega _i \) are the eigenvalues of \( \rho \). Using this definition and the eigenvalues (A3A6) one can deduce Eq. (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelghany, R.A., Mohamed, AB.A., Tammam, M. et al. Dynamical characteristic of entropic uncertainty relation in the long-range Ising model with an arbitrary magnetic field. Quantum Inf Process 19, 392 (2020). https://doi.org/10.1007/s11128-020-02897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02897-x

Keywords

Navigation