Skip to main content
Log in

Decoherence of a two-level system in a coherent superposition of two dephasing environments

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Decoherence of a two-level system is studied when it interacts with one of two environments via a dephasing coupling, where the environments are treated as classical and quantum systems. The situation is considered in which the environment that actually interacts with the two-level system is determined by a state of an ancillary two-level system. When information conveyed by the ancillary two-level system is discarded, the reduced dynamics of the relevant two-level system is described by a statistical mixture of two dephasing channels, which shows mixing-induced non-Markovianity. When projective measurement is performed on the ancillary two-level system to extract some information, the diagonal elements of the reduced state of the two-level system depend on time in spite of the dephasing process. Furthermore, it is found that the coherence of the two-level system can exceed its initial value. The parameter region is clarified in which the measurement on the ancillary two-level system can improve the coherence of the relevant two-level system. In particular, when the two environments are equivalent and the ancillary two-level system is in the maximally coherent state, the coherence of the two-level system can be always enhanced by measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2014)

    ADS  MathSciNet  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Reid, M.D., Drummond, P.D., Bowen, W.P., Cavalcanti, E.G., Lam, K.P., Bachor, H.A., Andersen, U.L., Leuchs, G.: The Einstein–Podolsky–Rosen paradox: from concepts to applications. Rev. Mod. Phys. 81, 1727 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    ADS  Google Scholar 

  5. Emary, C., Lambert, N., Nori, F.: Leggett–Garg inequalities. Rep. Prog. Phys. 77, 016001 (2014)

    ADS  MathSciNet  Google Scholar 

  6. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  7. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. A 400, 1818 (1985)

    MathSciNet  MATH  Google Scholar 

  14. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Gallager, R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)

    MATH  Google Scholar 

  16. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    MATH  Google Scholar 

  17. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, Berlin (1985)

    MATH  Google Scholar 

  18. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  19. Carmichael, H.: An Open Quantum Systems: Approach to Quantum Optics. Springer, Berlin (1991)

    MATH  Google Scholar 

  20. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  21. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998)

    ADS  MathSciNet  Google Scholar 

  22. Ban, M.: Photon-echo technique for reducing the decoherence of a quantum bit. J. Mod. Opt. 45, 2315 (1998)

    ADS  Google Scholar 

  23. Vitali, D., Tombesi, P.: Using parity kicks for decoherence control. Phys. Rev. A 59, 4178 (1999)

    ADS  Google Scholar 

  24. Uchiyama, C., Aihara, M.: Multipulse control of decoherence. Phys. Rev. A 66, 032313 (2002)

    ADS  Google Scholar 

  25. Falci, G., D’Arrigo, M., Mastellone, A., Paladino, E.: Dynamical suppression of telegraph and \(1/f\) noise due to quantum bistable fluctuators. Phys. Rev. A 70, 040101 (2004)

    ADS  Google Scholar 

  26. Khodjasteh, K., Lidar, D.A.: Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett. 95, 180501 (2005)

    ADS  Google Scholar 

  27. Gutmann, H., Wilhelm, F.K., Kaminsky, W.K., Lloyd, S.: Compensation of decoherence from telegraph noise by means of an open-loop quantum-control technique. Phys. Rev. A 71, 020302 (2005)

    ADS  Google Scholar 

  28. Santos, L.F., Viola, L.: Dynamical control of qubit coherence: random versus deterministic schemes. Phys. Rev. A 72, 062303 (2005)

    ADS  Google Scholar 

  29. Shor, P.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    ADS  Google Scholar 

  30. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Zanardi, P., Resetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    ADS  Google Scholar 

  32. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    ADS  Google Scholar 

  33. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)

    ADS  Google Scholar 

  34. Sun, Q., Al-Amri, M., Luiz, D., Suhail, Z.M.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    ADS  Google Scholar 

  35. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Google Scholar 

  36. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    ADS  Google Scholar 

  37. Li, W.J., He, Z., Wang, Q.: Protecting distribution entanglement for two-qubit state using weak measurement and reversal. Int. J. Theor. Phys. 56, 2813 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Wang, Q., Tang, J.S., He, Z., Yuan, J.B.: Decoherence suppression in phase decoherence environment using weak measurement and quantum measurement reversal. Int. J. Theor. Phys. 57, 3682 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Xiao, X., Fang, M.F., Li, Y.L.: Non-Markovian dynamics of two qubits driven by classical fields: population trapping and entanglement preservation. J. Phys. B 43, 185505 (2010)

    ADS  Google Scholar 

  40. Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system. Phys. Rev. A 91, 052105 (2015)

    ADS  Google Scholar 

  41. Ren, Y.K., Tang, L.M., Zeng, H.S.: Protection of quantum Fisher information in entangled states via classical driving. Quantum Inf. Process. 15, 5011 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Huang, Z., Situ, H.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Gholipour, H., Mortezapour, A., Nosrati, F., Franco, R.L.: Quantumness and memory of one qubit in a dissipative cavity under classical control. Ann. Phys. 414, 168073 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Mortezapour, A., Nourmandipour, A., Gholipour, H.: The effect of classical driving field on the spectrum of a qubit and entanglement swapping inside dissipative cavities. Quantum Inf. Process. 19, 136 (2020)

    ADS  MathSciNet  Google Scholar 

  45. Chiribella, G.: Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301 (2012)

    ADS  Google Scholar 

  46. Chiribella, G., D’Ariano, G.M., Perinotti, P., Valiron, B.: Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013)

    ADS  Google Scholar 

  47. Ibnouhsein, I., Grinbaum, A.: Information-theoretic constraints on correlations with indefinite causal order. Phys. Rev. A 92, 042124 (2015)

    ADS  MathSciNet  Google Scholar 

  48. Ebler, D., Salek, S., Chiribella, G.: Enhanced communication with the assistance of indefinite causal order. Phys. Rev. Lett. 120, 120502 (2018)

    ADS  Google Scholar 

  49. Salek, S., Ebler, D., Chiribella, G.: Quantum communication in a superposition of causal orders. LANL arXiv: 1809.06655 [quant-ph] (2018)

  50. Chiribella, G., Banik, M., Bhattacharya, S.S., Guha, T.: Indefinite causal order enables perfect quantum communication with zero capacity channel. LANL arXiv: 1810.10457 [quant-ph] (2018)

  51. Goswami, K., Giarmatzi, C., Kewming, M., Costa, F., Branciard, C., Romero, J., White, A.G.: Indefinite causal order in a quantum switch. Phys. Rev. Lett. 121, 090503 (2018)

    ADS  Google Scholar 

  52. Guerin, P.A., Rubino, G., Brukner, C.: Communication through quantum-controlled noise. Phys. Rev. A 99, 062317 (2019)

    ADS  Google Scholar 

  53. Jia, D., Costa, F.: Causal order as a resource for quantum communication. Phys. Rev. A 100, 052319 (2019)

    ADS  Google Scholar 

  54. Guo, Y., Hu, X.M., Hou, Z.B., Cao, H., Cui, J.M., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C., Chiribella, G.: Experimental transmission of quantum information using a superposition of causal orders. Phys. Rev. Lett. 124, 030502 (2020)

    ADS  Google Scholar 

  55. Loizeau, N., Grinbaum, A.: Channel capacity enhancement with indefinite causal order. Phys. Rev. A 101, 012340 (2020)

    ADS  Google Scholar 

  56. Procopio, L.M., Delgado, F., Enriquez, M., Belabas, N., Levenson, J.A.: Sending classical information via three noisy channels in superposition of causal orders. Phys. Rev. A 101, 012346 (2020)

    ADS  Google Scholar 

  57. Mukhopadhyay, C., Pati, A.K.: Superposition of causal order enables perfect quantum teleportation with very noisy singlets. LANL arXiv: 1901.07626 [quant-ph] (2019)

  58. Cardoso-Isidoro, C., Delgado, F.: Featuring causal order in teleportation of two quantum teleportation channels. LANL arXiv: 1911.04550 [quant-ph] (2019)

  59. Zhao, X., Yang, Y., Chiribella, G.: Quantum metrology with indefinite causal order. LANL arXiv: 1912.02449 [quant-ph] (2019)

  60. Oi, D.K.L.: Interference of quantum channels. Phys. Rev. Lett. 91, 067902 (2002)

    ADS  Google Scholar 

  61. Gisin, N., Linden, N., Massar, S., Popescu, S.: Error filtration and entanglement purification for quantum communication. Phys. Rev. A 72, 012338 (2005)

    ADS  Google Scholar 

  62. Chiribella, G., Kristjánsson, H.: Quantum Shannon theory with superpositions of trajectories. Proc. R. Soc. A 475, 20180903 (2019)

    ADS  MathSciNet  Google Scholar 

  63. Kristjánsson, H., Chiribella, G., Salek, S., Ebler, D., Wilson, M.: Resource theories of communication. New J. Phys. 22, 073014 (2020)

    ADS  MathSciNet  Google Scholar 

  64. Abbott, A.A., Wechs, J., Horsman, D., Mhalla, M., Branciard, C.: Communication through coherent control of quantum channels. LANL arXiv: 1810.09826 [quant-ph] (2018)

  65. Rubino, G., Rozema, L.A., Ebler, D., Kristjánsson, H., Salek, S., Guérin, P.A., Abbott, A.A., Branciard, C., Brukner, C., Chiribella, G., Walther, P.: Experimental quantum communication enhancement by superposing trajectories. LANL arXiv: 2007.05005 [quant-ph] (2019)

  66. Breuer, H.P., Amato, G., Vacchini, B.: Mixing-induced quantum non-Markovianity and information flow. New J. Phys. 20, 043007 (2018)

    ADS  Google Scholar 

  67. Aharonov, Y., Anandan, J., Popescu, S., Vaidman, L.: Superposition of time evolutions of a quantum system and a quantum time-translation machine. Phys. Rev. Lett. 64, 2965 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393 (2006)

    ADS  Google Scholar 

  69. Benedetti, C., Paris, M.G.A., Maniscalco, S.: Non-Markovianity of colored noisy channels. Phys. Rev. A 89, 012114 (2014)

    ADS  Google Scholar 

  70. Daniotti, S., Benedetti, C., Paris, M.G.A.: Qubit systems subject to unbalanced random telegraph noise: quantum correlations, non-Karkovianity and teleportation. Eur. Phys. J. D 72, 208 (2018)

    ADS  Google Scholar 

  71. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1983)

    MATH  Google Scholar 

  72. Luczka, J.: Spin in contact with thermostat: exact reduced dynamics. Physica A 167, 919 (1990)

    ADS  MathSciNet  Google Scholar 

  73. Morozov, V.G., Mathey, S., Röpke, G.: Decoherence in an exactly solvable qubit model with initial qubit-environment correlations. Phys. Rev. A 85, 022101 (2012)

    ADS  Google Scholar 

  74. Usui, R., Ban, M.: Temporal nonlocality of a two-level system interacting with a dephasing environment. Quantum Inf. Process. 19, 159 (2020)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Ban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The relaxation and phase parameters in the Ohmic-like dissipation

The relaxation and phase parameters in the Ohmic-like dissipation

We derive explicit expressions for the relaxation and phase parameters, \(\gamma _{j}(t)\) and \(\theta _{j}(t)\), when the environment \(E_{j}\) has the Ohmic-like dissipation. Taking a continuum limit as \(4\sum _{k}\vert g_{j,k}\vert ^{2}F(\omega _{k}) \rightarrow \int _{0}^{\infty }\text {d}w\,J_{j}(w)F(w)\) with a spectral function \(J_{j}(w)\) of the jth environment \(E_{j}\), we obtain the relaxation and phase parameters from Eqs. (75) and (76)

$$\begin{aligned} \gamma _{j}(t)&=\int _{0}^{\infty }\text {d}w\,J_{j}(w) \frac{1-\cos w t}{w^{2}} \coth \left( \frac{\hbar w}{2k_{\mathrm {B}}T_{j}}\right) , \end{aligned}$$
(95)
$$\begin{aligned} \theta _{j}(t)&=\int _{0}^{\infty }\text {d}w\,J_{j}(w) \frac{w t-\sin w t}{w^{2}}. \end{aligned}$$
(96)

The spectral function of the Ohmic-like environment [20, 72, 73] is given by

$$\begin{aligned} J_{j}(w)=\lambda _{j}\varOmega _{j} \left( \frac{w}{\varOmega _{j}}\right) ^{s_{j}} \text {e}^{-w/\varOmega _{j}}, \end{aligned}$$
(97)

where \(\lambda _{j}\) stands for a coupling strength between the two-level system Q and the environment \(E_{j}\), \(\varOmega _{j}\) is a cutoff frequency and \(s_{j}\) represents an Ohmicity parameter of the environment \(E_{j}\) which is referred to as the sub-Ohmic, Ohmic and super-Ohmic environment, according to \(0<s_{j}<1\), \(s_{j}=1\) and \(1<s_{j}\). Then, the phase parameter \(\theta _{j}(t)\) and the relaxation parameter \(\gamma _{j}(t)\) [73, 74] are calculated to be

$$\begin{aligned} \theta _{j}(t)&=\lambda _{j}\varOmega _{j}\varGamma (s_{j})t +\lambda _{j}\tan ^{-1}(\varOmega _{j}t), \end{aligned}$$
(98)
$$\begin{aligned} \gamma _{j}(t)&=\frac{1}{2}\lambda _{j}\ln [1+(\varOmega _{j}t)^{2}] +2\lambda _{j}\nonumber \\&\quad \times \left\{ \ln \varGamma \left( 1+\frac{k_{\mathrm {B}}T_{j}}{\hbar \varOmega _{j}}\right) -\ln \left| \varGamma \left( 1+\frac{k_{\mathrm {B}}T_{j}}{\hbar \varOmega _{j}} +i\frac{k_{\mathrm {B}}T_{j}}{\hbar }t\right) \right| \right\} , \end{aligned}$$
(99)

for \(s_{j}=1\) and

$$\begin{aligned} \theta _{j}(t)&=\lambda _{j}\varOmega _{j}\varGamma (s_{j})t +\lambda _{j}\varGamma (s_{j}-1) \frac{\sin [(s_{j}-1)\tan ^{-1}(\varOmega _{j}t)]}{[1+(\varOmega _{j}t)^{2}]^{(s_{j}-1)/2}}, \end{aligned}$$
(100)
$$\begin{aligned} \gamma _{j}(t)&=\lambda _{j}\varGamma (s_{j}-1)g_{s_{j}}(\varOmega _{j}t) +2\lambda _{j}\left( \frac{k_{\mathrm {B}}T_{j}}{\hbar \varOmega _{j}}\right) ^{s_{j}-1} \varGamma (s_{j}-1)\nonumber \\&\quad \times \sum _{n=1}^{\infty } \frac{\displaystyle { g_{s_{j}}\left( \frac{\frac{k_{\mathrm {B}}T_{j}}{\hbar }t}{n+\frac{k_{\mathrm {B}}T_{j}}{\hbar \varOmega _{j}}}\right) }}{\displaystyle { \left( n+\frac{k_{\mathrm {B}}T_{j}}{\hbar \varOmega _{j}}\right) ^{(s_{j}-1)/2}} }, \end{aligned}$$
(101)

for \(s_{j}\ne 1\), where \(g_{s}(z)\) is given by

$$\begin{aligned} g_{s}(z)=1-\frac{\cos [(s-1)\tan ^{-1}z]}{(1+z^{2})^{(s-1)/2}}. \end{aligned}$$
(102)

The asymptotic value of the relaxation parameter is

$$\begin{aligned} \gamma _{j}(\infty )={\left\{ \begin{array}{ll} \lambda _{j}\varGamma (s_{j}-1) &{} (T_{j}=0 \text { and }s_{j}>1) \\ \displaystyle {\lambda _{j}\varGamma (s_{j}-1)\left[ 1+2\left( \frac{k_{\mathrm {B}}T}{\hbar \varOmega }\right) ^{s_{j}-1} \zeta (s_{j}-1,1+k_{\mathrm {B}}T/\hbar \varOmega )\right] } &{} (T_{j}>0 \text { and }s_{j}>2) \\ \infty &{} \text {(otherwise)} \end{array}\right. } \qquad \end{aligned}$$
(103)

with \(\zeta (s,a)=\sum _{n=0}^{\infty }(n+a)^{-s}\). We note that the coherence of the two-level system Q remains finite in the asymptotic limit unless \(\lim _{t\rightarrow \infty }\gamma _{j}(t)=\infty \) [73]. It is also known that the reduced time-evolution of the two-level system Q which is caused by the environment \(E_{j}\) is Markovian (non-Markovian) if \(s_{j}\le 2\) (\(s_{j}>2\)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, M. Decoherence of a two-level system in a coherent superposition of two dephasing environments. Quantum Inf Process 19, 409 (2020). https://doi.org/10.1007/s11128-020-02903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02903-2

Keywords

Navigation