Skip to main content
Log in

Effect of memory on the violation of Leggett–Garg inequality

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Leggett–Garg inequalities impose restrictions on the values taken by some combinations of the two-time correlation functions of observables in order to be explainable by a noninvasive realist classical model. While in the unitary dynamics, it is straightforward to compute these correlation functions, open system effects bring in subtleties. Specifically, for non-Markovian dynamics, which involves setting up of system–bath correlations, the Leggett–Garg measurements disrupt these correlations, making a full system–bath Hamiltonian approach natural. However, here we point out that the problem can also be dealt with from a reduced dynamics perspective. The key point is that the noise superoperator acting on the system must be suitably updated after measurement interventions. Also considered is the effect of Markovian versus non-Markovian behavior as well as classically non-Markovian processes on the violation of Leggett–Garg inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1, 195 (1964)

    MathSciNet  Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    ADS  MATH  Google Scholar 

  3. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555–563 (1935)

    ADS  MATH  Google Scholar 

  4. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    ADS  MATH  Google Scholar 

  5. Adhikari, S., Banerjee, S.: Operational meaning of discord in terms of teleportation fidelity. Phys. Rev. A 86, 062313 (2012)

    ADS  Google Scholar 

  6. Banerjee, S., Alok, A.K., MacKenzie, R.: Quantum correlations in B and K meson systems. Eur. Phys. J. Plus 131, 129 (2016)

    Google Scholar 

  7. Alok, A.K., Banerjee, S., Sankar, S.U.: Quantum correlations in terms of neutrino oscillation probabilities. Nucl. Phys. B 909, 65 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Banerjee, S., Alok, A.K., Srikanth, R., Hiesmayr, B.C.: A quantum-information theoretic analysis of three-flavor neutrino oscillations. Eur. Phys. J. C 75, 487 (2015)

    ADS  Google Scholar 

  9. Alok, A.K., Banerjee, S., Sankar, S.U.: Re-examining sin 2\(\beta \) and \(\Delta \)md from evolution of Bd0 mesons with decoherence. Phys. Lett. B 749, 94 (2015)

    ADS  MATH  Google Scholar 

  10. Chakrabarty, I., Banerjee, S., Siddharth, N.: A study of quantum correlations in open quantum systems. Quantum Inf. Comput. 11, 0541 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Eur. Phys. J. D 56, 277 (2010)

    ADS  MATH  Google Scholar 

  12. Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Ann. Phys. 325, 816 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Dijkstra, A.G., Tanimura, Y.: Non-Markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett. 104, 250401 (2010)

    ADS  Google Scholar 

  14. Kaer, P., Nielsen, T.R., Lodahl, P., Jauho, A.-P., Mørk, J.: Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system. Phys. Rev. Lett. 104, 157401 (2010)

    ADS  Google Scholar 

  15. Mirza, I.M.: Controlling tripartite entanglement among optical cavities by reservoir engineering. J. Modern Opt. 62, 1048 (2015)

    ADS  Google Scholar 

  16. Mirza, I.M., Schotland, J.C.: Multiqubit entanglement in bidirectional-chiral-waveguide QED. Phys. Rev. A 94, 012302 (2016)

    ADS  Google Scholar 

  17. Jiang, W., Wu, F.-Z., Yang, G.-J.: Non-Markovian entanglement dynamics of open quantum systems with continuous measurement feedback. Phys. Rev. A 98, 052134 (2018)

    ADS  Google Scholar 

  18. Naikoo, J., Thapliyal, K., Pathak, A., Banerjee, S.: Probing nonclassicality in an optically driven cavity with two atomic ensembles. Phys. Rev. A 97, 063840 (2018)

    ADS  Google Scholar 

  19. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

    ADS  Google Scholar 

  20. Tittel, W., Brendel, J., Gisin, B., Herzog, T., Zbinden, H., Gisin, N.: Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A 57, 3229 (1998)

    ADS  Google Scholar 

  21. Lanyon, B., Jurcevic, P., Hempel, C., Gessner, M., Vedral, V., Blatt, R., Roos, C.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013)

    ADS  Google Scholar 

  22. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Barbieri, M.: Multiple-measurement leggett-garg inequalities. Phys. Rev. A 80, 034102 (2009)

    ADS  Google Scholar 

  24. Avis, D., Hayden, P., Wilde, M.M.: Leggett–Garg inequalities and the geometry of the cut polytope. Phys. Rev. A 82, 030102 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Lambert, N., Emary, C., Chen, Y.-N., Nori, F.: Distinguishing quantum and classical transport through nanostructures. Phys. Rev. Lett. 105, 176801 (2010)

    ADS  Google Scholar 

  26. Lambert, N., Johansson, R., Nori, F.: Macrorealism inequality for optoelectromechanical systems. Phys. Rev. B 84, 245421 (2011)

    ADS  Google Scholar 

  27. Emary, C., Lambert, N., Nori, F.: Leggett–Garg inequalities. Rep. Prog. Phys. 77, 016001 (2013)

    ADS  MathSciNet  Google Scholar 

  28. Kofler, J., Brukner, Č.: Condition for macroscopic realism beyond the Leggett–Garg inequalities. Phys. Rev. A 87, 052115 (2013)

    ADS  Google Scholar 

  29. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985)

    ADS  MathSciNet  Google Scholar 

  30. Montina, A.: Dynamics of a qubit as a classical stochastic process with time-correlated noise: minimal measurement invasiveness. Phys. Rev. Lett. 108, 160501 (2012)

    ADS  Google Scholar 

  31. Emary, C.: Leggett–Garg inequalities for the statistics of electron transport. Phys. Rev. B 86, 085418 (2012)

    ADS  Google Scholar 

  32. Emary, C.: Decoherence and maximal violations of the Leggett–Garg inequality. Phys. Rev. A 87, 032106 (2013)

    ADS  Google Scholar 

  33. Naikoo, J., Alok, A.K., Banerjee, S., Sankar, S.U., Guarnieri, G., Schultze, C., Hiesmayr, B.C.: A quantum information theoretic quantity sensitive to the neutrino mass-hierarchy. Nucl. Phys. B 951, 114872 (2020)

    Google Scholar 

  34. Naikoo, J., Alok, A.K., Banerjee, S.: Study of temporal quantum correlations in decohering B and K meson systems. Phys. Rev. D 97, 053008 (2018)

    ADS  Google Scholar 

  35. Mal, S., Das, D., Home, D.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Phys. Rev. A 94, 062117 (2016)

    ADS  Google Scholar 

  36. Naikoo, J., Banerjee, S.: Entropic Leggett–Garg inequality in neutrinos and B (K) meson systems. Eur. Phys. J. C 78, 602 (2018)

    ADS  Google Scholar 

  37. Palacios-Laloy, A., Mallet, F., Nguyen, F., Bertet, P., Vion, D., Esteve, D., Korotkov, A.N.: Experimental violation of a Bell’s inequality in time with weak measurement. Nat. Phys. 6, 442 (2010)

    Google Scholar 

  38. Goggin, M., Almeida, M., Barbieri, M., Lanyon, B., Obrien, J., White, A., Pryde, G.: Violation of the Leggett-Garg inequality with weak measurements of photons. Proc. Natl. Acad. Sci. 108, 1256 (2011)

    ADS  Google Scholar 

  39. Xu, J.-S., Li, C.-F., Zou, X.-B., Guo, G.-C.: Experimental violation of the Leggett–Garg inequality under decoherence. Sci. Rep. 1, 101 (2011)

    Google Scholar 

  40. Dressel, J., Broadbent, C., Howell, J., Jordan, A.N.: Experimental violation of two-party Leggett–Garg inequalities with semiweak measurements. Phys. Rev. Lett. 106, 040402 (2011)

    ADS  Google Scholar 

  41. Suzuki, Y., Iinuma, M., Hofmann, H.F.: Violation of Leggett–Garg inequalities in quantum measurements with variable resolution and back-action. New J. Phys. 14, 103022 (2012)

    Google Scholar 

  42. Athalye, V., Roy, S.S., Mahesh, T.: Investigation of the Leggett–Garg inequality for precessing nuclear spins. Phys. Rev. Lett. 107, 130402 (2011)

    ADS  Google Scholar 

  43. Katiyar, H., Shukla, A., Rao, K.R.K., Mahesh, T.: Violation of entropic Leggett–Garg inequality in nuclear spins. Phys. Rev. A 87, 052102 (2013)

    ADS  Google Scholar 

  44. Aravinda, S., Srikanth, R.: On a general criterion for nonclassicality from a signaling perspective, arXiv:1211.6407 ( 2012)

  45. Fritz, T.: Quantum correlations in the temporal Clauser–Horne–Shimony–Holt (CHSH) scenario. New J. Phys. 12, 083055 (2010)

    ADS  MATH  Google Scholar 

  46. Kumari, S., Pan, A.: Probing various formulations of macrorealism for unsharp quantum measurements. Phys. Rev. A 96, 042107 (2017)

    ADS  Google Scholar 

  47. Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014)

    ADS  MathSciNet  Google Scholar 

  48. Kumar, N.P., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian evolution: a quantum walk perspective. Open Syst. Inf. Dyn. 25, 1850014 (2018)

    MATH  Google Scholar 

  49. Omkar, S., Srikanth, R., Banerjee, S.: The operator-sum-difference representation of a quantum noise channel. Quantum Inf. Process. 14, 2255 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Chen, S.-L., Lambert, N., Li, C.-M., Miranowicz, A., Chen, Y.-N., Nori, F.: Quantifying non-Markovianity with temporal steering. Phys. Rev. Lett. 116, 020503 (2016)

    ADS  Google Scholar 

  51. Goan, H.-S., Chen, P.-W., Jian, C.-C.: Non-Markovian finite-temperature two-time correlation functions of system operators: beyond the quantum regression theorem. J. Chem. Phys. 134, 124112 (2011)

    ADS  Google Scholar 

  52. Chen, P.-W., Ali, M.M.: Investigating Leggett-Garg inequality for a two level system under decoherence in a non-Markovian dephasing environment. Sci. Rep. 4, 6165 (2014)

    Google Scholar 

  53. Ban, M.: Violation of the quantum regression theorem and the Leggett–Garg inequality in an exactly solvable model. Phys. Lett. A 381, 2313 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Swain, S.: Master equation derivation of quantum regression theorem. J. Phys. A Math. Gen. 14, 2577 (1981)

    ADS  MathSciNet  Google Scholar 

  55. Guarnieri, G., Smirne, A., Vacchini, B.: Quantum regression theorem and non-Markovianity of quantum dynamics. Phys. Rev. A 90, 022110 (2014)

    ADS  Google Scholar 

  56. Nielsen, M. A., Chuang, I.: Quantum computation and quantum information ( 2002)

  57. Budini, A.A.: Stochastic representation of a class of non-Markovian completely positive evolutions. Phys. Rev. A 69, 042107 (2004)

    ADS  Google Scholar 

  58. Breuer, H.-P., Petruccione, F., et al.: The Theory of Open Quantum Systems. Oxford University Press on Demand, Oxford (2002)

    MATH  Google Scholar 

  59. Kraus, K., Böhm, A., Dollard, J. D., Wootters, W.: States, effects, and operations: fundamental notions of quantum theory. Lectures in mathematical physics at the University of Texas at Austin, Lecture notes in physics 190 ( 1983)

  60. Sudarshan, E., Mathews, P., Rau, J.: Stochastic dynamics of quantum-mechanical systems. Phys. Rev. 121, 920 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Vacchini, B., Smirne, A., Laine, E.-M., Piilo, J., Breuer, H.-P.: Markovianity and non-Markovianity in quantum and classical systems. New J. Phys. 13, 093004 (2011)

    ADS  Google Scholar 

  62. Murnaghan, F. D.: The unitary and rotation groups. The unitary and rotation groups, Vol. 3 (Spartan books, 1962)

  63. Utagi, S., Srikanth, R., Banerjee, S.: Temporal self-similarity of quantum dynamical maps as a concept of memorylessness. Sci. Rep. 10, 1 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javid Naikoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naikoo, J., Banerjee, S. & Srikanth, R. Effect of memory on the violation of Leggett–Garg inequality. Quantum Inf Process 19, 408 (2020). https://doi.org/10.1007/s11128-020-02905-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02905-0

Keywords