
Effect of memory on the violation of Leggett-Garg inequality

Javid Naikoo,1, ∗ Subhashish Banerjee,1, † R. Srikanth2, ‡

1Indian Institute of Technology Jodhpur, Jodhpur 342011, India
2Poornaprajna Institute of Scientific Research, Bangalore - 562164, India

The Leggett-Garg inequalities impose restrictions on the values taken by some combinations of the
two-time correlation functions of observables in order to be explainable by a noninvasive-realist
classical model. While in the unitary dynamics, it is straightforward to compute these correlation
functions, open system effects bring in subtleties. Specifically, for non-Markovian dynamics, which
involves setting up of system-bath correlations, the Leggett-Garg measurements disrupt these cor-
relations, making a full system-bath Hamiltonian approach natural. However, here we point out
that the problem can also be dealt with from a reduced dynamics perspective. The key point is
that the noise superoperator acting on the system must be suitably updated after measurement
interventions. Also considered is the effect of Markovian versus non-Markovian behavior as well as
classically non-Markovian processes on the violation of Leggett-Garg inequalities.

I. INTRODUCTION

The study of nonclassical correlations has not only turned out to be an important tool in probing the basic features
which make a quantum system different from a classical system, but has also provided potential resources for future
quantum technologies. The nonclassical correlations can be quantified in many ways. The celebrated Bell inequalities
[1] serve as a test for the local realism. Quantum steering [2] allows one party to change the state of the other by
local measurements. The nonseparability of the state of a system is probed by so called entanglement witnesses
[3]. Quantum discord is another measure of nonclassical correlation which can even exist in systems which are not
entangled [4, 5]. These spatial quantum correlations have been a subject matter of many theoretical [6–18] and
experimental works [19–22].

Temporal quantum correlations, which exist between different measurements made on a single system at different
times, have attracted lot of attention in recent years. Prominent among these are the Leggett-Garg inequalities (LGIs).
In their different forms, LGIs has been analyzed in various theoretical [23–36] and experimental works [37–43].

The two important macroscopic notions on which LGIs are formulated are macrorealism and non-invasive measur-
ability [27, 29]. Macrorealism means that a system, which has available to it two or more macroscopically distinct
states, must be in one of these states at any given time. Non-invasive measurability means that the act of mea-
surement reveals the state of the system without disturbing its future dynamics. Both these assumptions are not
respected by quantum systems; the superposition principle violates the first and the collapse of the wavefunction
under measurement defies the second. With these two assumptions, the simplest form of LGI in terms of the LG
parameter K3

K3 = C(t0, t1) + C(t1, t2)− C(t0, t2), (1)

is given by −3 ≤ K3 ≤ 1. Here C(ti, tj) = 〈Q(ti)Q(tj)〉 is the two-time correlation for the dichotomic observable
Q(t) = ±1. The two-time correlations Cij appearing in Eq. (1) can be written in terms of the conditional probabilities
as

C(ti, tj) = p(+ti)q(
+tj |+ti)− p(+ti)q(

−tj |+ti)− p(−ti)q(+tj |−ti) + p(−ti)q(
−tj |−ti), (2)

where p(ati) is the probability of obtaining the result a = ±1 at ti, and q(btj |ati) is the conditional probability of
getting result b = ±1 at time tj , given that result a = ±1 was obtained at ti.

Suppose Alice and Bob measure observables Â and B̂, obtaining outcomes a, b ∈ {±1}. Then, for any input state
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ρ, one finds

Pab|Â(ti)B̂(tj) = Tr

(
1 + bB̂(tj)

2

1 + aÂ(ti)

2
ρ

1 + aÂ(ti)

2

)

=
1

4
+
a

4
Tr(Â(ti)ρ) +

b

8
Tr(B̂(tj)ρ) +

ab

8
Tr({Â(ti), B̂(tj)}ρ) +

b

8
Tr( ˆA(ti)B̂(tj)Â(ti)ρ), (3)

from which it follows that the correlator C(ti, tj) ≡ 〈Â(ti)B̂(tj)〉 =
∑
a,b abPab|Â(ti)B̂(tj) = 1

2 〈{Â(ti)B̂(tj)}〉 = ~A(ti) ·
~B(tj), where Â(t) = ~A(t) · ~σ and B̂(t) = ~B(t) · ~σ [44, 45], where σ are the Pauli matrices. Thus, the correlators Cij
are independent of the input state, if the two measurements are projective. In the context of LGIs, Â and B̂ would
be the observable Q̂ at different times ti and tj ; similar conclusions follow.

It emerges from our work that the intervening noise between two measurements is relevant for the evolution of the
LG parameter. This can be understood equally well by absorbing the noise into the measurements, which can then
be regarded as a noise-induced POVM [46], and no longer projective measurements.

In this work, we will study the effect of non-Markovianity on temporal correlations, in particular, as part of
a test for LGI. From a quantum information theoretic perspective, non-Markovianity has of late been studied by
the (not always equivalent) criteria of (CP) divisibility and distinguishability [47]. In particular, non-Markovianity
according to the former criterion manifests as the fact that the intermediate map (i.e., the dynamical map that
propagates an intermediate earlier state to a later state) acting on the density operator is not-completely-positive
(NCP) [48]. As a result, the intermediate time evolution of the density operator is no longer given by the Kraus
operator-sum representation. Instead, the operator sum-difference representation must be employed [49], wherein the
trace-preserving NCP map is represented as the difference of two CP maps.

In the context of temporal correlations, that they will also be affected by non-Markovianity, as are general quantum
phenomena, is not surprising. Indeed, a sufficient but not necessary measure for non-Markovianity in terms of a
temporal steerable weight is given in [50]. However, there is an important fact to be recognized here, which is that
non-Markovianity in general involves setting up system-bath correlations, even through the system and bath may be
initially uncorrelated. Therefore, the intervention of measurement that is done to produce temporal correlations, will
in general re-prepare the environment also, just as it re-prepares the system. Hence, correlations based on a subsequent
measurement will be subject, in general, to a different noisy channel than the first measurement, and furthermore,
would depend on the output of the preceding measurement. The above observation seems to be implicitly present in
existing treatments of temporal correlations under scenarios where the assumption that the system and environment
retain a factorized form has to be given up in some way. In such works, typically the joint system-environment
evolution is considered, rather than the reduced dynamics, in order to derive the system correlation functions.

In recent times, there have been a number of works that compute the two-time correlation functions for non-
Markovian dynamics. For example, the evolution equations for the two-time correlation functions for non-Markovain
evolution in the case of weak system-environment coupling was studied in [51], employing the full system-environment
Hamiltonian. In particular, with regard to the question of the LGI violation in the context of non-Markovian noise,
building on [51], the LGI violations for a two-level system under non-Markovian dephasing was studied in [52]. A
similar problem for the Jaynes-Cummings model was discussed in [53]. The common theme in these works is to
start from the full unitary evolution and then derive the evolution equations for the correlation functions using the
appropriate limits. In contrast to these works, here will explore the direct use of the system dynamics for studying
LGI violation, indicating the scope and constraints of this approach. In a related vein: the failure of the quantum
regression hypothesis (QRH) [54], which deals with multi-time correlation functions, also captures a traditional idea
of quantum non-Markovianity [55].

As noted above, because under non-Markovianity, system measurements can disturb the bath, and hence care must
be exercised in computing two-time correlations if the reduced dynamics alone is used. Here, we study LGI violation
in the non-Markovian regime which, to our knowledge, is the first instance where this is done using the system’s
reduced dynamics. We argue that a purely reduced dynamics approach can be adopted, with the proviso that the
noise is suitably updated in an outcome-dependent manner after the first (and subsequent) intervention(s).

The plan of this work is as follows: Section (II) is devoted to a description of a simple non-Markovian model and
its characterization. Further, in order to ascertain the impact of Markovian versus non-Markovian behavior as well as
to understand quantum and classical non-Markovian effects on the LGI, we consider two models, namely, the phase
damping (PD) [56] and the quantum semi-Markov processes [57], respectively. The corresponding LGIs, in the context
of these models, are discussed in Sec. (III). Conclusion of the work is presented in Sec. (IV).



3

II. NOISE MODELS

Here we consider a few noisy models with the subsequent aim of studying the LGI violation.

A. A Simple Model

Given times t2 > t1 > t0 during the evolution of an open system, suppose a projective measurement is performed
at time t1. If the environment is (approximately) stationary during the interval [t0, t2], then the same channel can
be considered as acting in the intervals (t1, t2) and (t0, t1). Let the Hilbert spaces of the system and environment be
denoted by HS and HE , respectively; with initial states |ψS〉 ∈ HS and |ψE〉 ∈ HE , respectively [58]. The combined
state |ψS〉 ⊗ |ψE〉 lives in the tensor product space HS ⊗HE . The total dynamics is given by unitary (U), and would
in general entangle the system and environment degrees of freedom such that the reduced dynamics, say from t0 to
t1, is described by the Kraus operators Kµ(t1 − t0) = 〈eµ|U(t1 − t0)|ψE〉, where {|eµ〉} is a basis for the environment
[59]. An act of measurement at time t1 would collapse the system in an eigenstate of the projector and simultaneously
modify the state of environment to |ψ′E〉. The new Kraus operators, governing the dynamics from t1 to t2 would be
K ′µ(t2 − t1) = 〈fµ|U(t2 − t1)|ψ′E〉, where |fµ〉 = eiξ |eµ〉 is a new environment basis. Assuming that the environment

state changes only by a global phase eiχ, i.e., |ψ′E〉 = eiχ |ψE〉, we have K ′µ(t2 − t1) = ei(ξ−χ)Kµ(t1 − t0). Thus the
two Kraus operators differ only by a global phase factor and hence describe the same dynamics, i.e., the reduced
dynamics they produce has the same time dependence.

Here, a crucial assumption made was that the act of measurement changes the state of environment at most by a
global phase. We will now illustrate, using a simple model, that such an assumption does not hold for non-Markovian
dynamics and one needs to update the post-measurement map depending upon the measurement outcome. If the
system-bath interaction is a product of local unitaries (i.e., it is not an entangling operation), then the system dynamics
is necessarily Markovian and CP-divisible. Therefore, if the system dynamics is CP-indivisible, then in general the
system-bath interaction is an entangling operation, that would generate entanglement between the system and bath.
In the former case, this allows for a clean separation between the system and reservoir time scales, which is not so
in the later case where the system-bath interaction is an entangling operation. Clearly, the above argument will no
longer hold, requiring the system dynamics to be modified post-measurement. To see how one must modify it, we
consider a simple model of system-bath interaction.

We consider a model which is a two qubit system, where one qubit is the environment E and the other is the system
S, such that the entanglement between the two qubits shows up as noise in the reduced dynamics of the first qubit.
For capturing the main conceptual points, we choose a simple (but non-trivial) environment to highlight the point
that the environment itself is reset after a measurement in the non-Markovian situation. Let us denote the initial
state of the system and environment by

|ψS〉 = (|0S〉+ |1S〉)/
√

2 and |ψE〉 = (|0E〉+ |1E〉)/
√

2, (4)

where the subscripts S and E correspond to system and environment, respectively. Let us assume a separable state
at time t = 0, that is, |ψ(0)〉 = |ψS〉 ⊗ |ψE〉. We adopt the Hamiltonian (with ~ = 1)

H = ω
(
|01〉〈10|+ |10〉〈01|

)
, (5)

which is reminiscent of the Jaynes-Cummings Hamiltonian, where the optical mode, restricted to the single excitation
subspace, is treated like a two-level system (qubit). Then, ω can be treated as the frequency of the Rabi-like
oscillations which happen between the two Bell states 1√

2
(|01〉±|10〉). As a consequence, the time evolution generated

by unitary operator U(t) = e−iHt corresponds to an entangling operation between the two qubits. Let us define the
density matrices corresponding to system ρS = |ψS〉 〈ψS |, environment ρE = |ψE〉 〈ψE |, and the composite state
ρSE(t) = |ψ(t)〉 〈ψ(t)|.

Characterization of non-Markovian dynamics: Here, we investigate the non-Markovian features of the above men-
tioned model by studying Sudarshan’s A and B dynamical maps [60]. The dynamics of an open system involves
mapping an initial input state ρ(0) to an output state ρ(t) at a given time t by a linear map A(t, 0). This is done by
vectorizing the reduced system density matrix ρS , obtained by tracing over the environment E, such that ρ′S = A.ρS ,
or ρp,q(t0)→ ρ′p,q(t) = Apq;rs(t, t0)ρr,s(t0).
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Figure 1: (color online) Eigenvalues λk (k = 1, 2, 3, 4) of the Choi matrix Bpr;qs(t, t/2). Negative eigenvalues indicate that the
map is NCP.

Figure 2: (color online) A measurement of a dichotomic observable on ρ(t) would be followed by two possible dynamics
depending on its outcome. The map Φo (Eq. (10)) would be replaced by Φ+ and Φ− (Eq. (17)) depending on whether the
outcome is +1 or −1, respectively.

A(t, 0) =


1
4 (cos(2tω) + 3) 1

4 i sin(2tω) − 1
2 i sin(tω) cos(tω)

1
2 i sin(tω) cos(tω) 0 − 1

2 i sin(tω)
− 1

2 i sin(tω) 0 cos(tω) 1
2 i sin(tω)

1
2 sin2(tω) − 1

4 i sin(2tω) 1
4 i sin(2tω) 1

4 (cos(2tω) + 3)

 . (6)

In order to show the CP indivisibility of the map, we divide the time evolution between (0, t) into interval (0, t/2)
and (t/2, t), such that A(t, t/2) = A(t, 0)A−1(t/2, 0). One can then construct the B(t, t/2) map, which is basically
the Choi matrix, by using

Bpr;qs(t, t/2) = Apq;rs(t, t/2). (7)

The eigenvalues of this matrix are plotted in Fig. (1). The negative eigenvalues indicate CP-indivisibility of the map.

In fact, it is possible to show that the map is P-indivisible. For that it is enough to show that the evolution under
this map leads to increase in the distinguishability of two states. This can be shown by looking at the behavior
of trace distance function between two orthogonal states subjected to the map Φo described by Eq. (10) below.
Consider two orthogonal states ρ0(0) = |0〉 〈0| and ρ1(0) = |1〉 〈1|, evolved under this map to ρ0(t) = Φo[ρ0(0)] and
ρ1(t) = Φo[ρ1(0)], respectively.

The trace distance between these states is defined as TD = 1
2

∑
k |ηk|, where ηk are the eigenvalues of matrix

ρ0(t)− ρ1(t). We have

TD =
1

2

√
7 + cos(ωt)

2
. (8)

It is clear that TD is an oscillating function of time. The recurrent behavior of TD is a signature of P-indivisibility
of the map, and could be interpretted as the backflow of information updating the system dynamics.

Reduced dynamics: The reduced state of the system can be obtained by tracing over the environment. Denoting
the set of basis states of the environment as {|eµ〉}, we have ρS(t) =

∑
µKµρSK†µ, where Kµ = 〈eµ|U(t)|ψE〉 are the
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Kraus operators. With the Hamiltonian given by Eq. (5) and the environment state given in Eq. (4) (the environment
basis states {|eµ〉 = |0E〉 , |1E〉}), we obtain

K0 =

(
1√
2

0

− i sin(ωt)√
2

cos(ωt)√
2

)
, and K1 =

(
cos(ωt)√

2
− i sin(ωt)√

2

0 1√
2

)
, (9)

satisfying the completeness relation K†0K0 +K†1K1 = 1.

Φo[ρS(0)] =
∑
µ

KµρS(0)K†µ. (10)

It is possible to show that the same map can be constructed by directly obtaining the Kraus operators from the Choi
matrix corresponding to map A given in Eq. (6).

Let us define the projectors on the system space as Π+ = |0S〉 〈0S | ⊗ 1E and Π− = |1S〉 〈1S | ⊗ 1E . Here, 1E is the
identity operator on the environment Hilbert space. Applying these projectors on time evolved state of the combined
system, the (normalized) post-measurement states in the two cases are given respectively as:

|φo(t)〉 =
1√
2

 1
e−iωt

0
0

 =

(
1
0

)
⊗ 1√

2

(
1

e−iωt

)
, (11)

|φ1(t)〉 =
1√
2

 0
0

e−iωt

1

 =

(
0
1

)
︸︷︷︸
system

⊗ 1√
2

(
e−iωt

1

)
︸ ︷︷ ︸
environment

. (12)

Therefore we have two possible evolutions with the following system and environment states

|χS(0)〉 = |0〉 , |χE(0)〉 =
|0〉+ e−iωt |1〉√

2
, post Π+ measurement (13)

and

|χS(0)〉 = |1〉 , |χE(0)〉 =
e−iωt |0〉+ |1〉√

2
, post Π− measurement. (14)

The corresponding Kraus operators turn out to be

K+
0 (t) =

(
1√
2

0

− ie
−iωt sin(ωt)√

2

cos(ωt)√
2

)
, K+

1 (t) =

(
e−iωt cos(ωt)√

2
− i sin(ωt)√

2

0 e−iωt
√

2

)
, (15)

and

K−0 (t) =

(
e−iωt
√

2
0

− i sin(ωt)√
2

e−iωt cos(ωt)√
2

)
, K−1 (t) =

(
cos(ωt)√

2
− ie

−iωt sin(ωt)√
2

0 1√
2

)
. (16)

We denote the corresponding maps by Φ±

Φ±[ρ(0)] =
∑
µ

K±µ ρ(0)(K±µ )† (17)

Figure (2) summarizes the various steps discussed above.
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B. Composition with the phasing damping map

The Hamiltonian in Eq. (5) generates a purely non-Markovian dynamics over the entire time domain as can be
concluded from Eq. (8). However, in order study the effect of Markovian versus non-Markovian noise on the degree
of violation of LGI, we define a composite map of Φ± and Φo defined in Eqs. (17) and (10), with the phase damping
(PD) noise model. The dynamics is governed by a Markovian map described by the following Kraus operators: P1 =(

1 0

0
√

1− λ(t)

)
, and P2 =

(
0 0

0
√
λ(t)

)
, such that ρ =

(
a b
c d

)
→ ρ′ =

∑
i=1,2 PiρP

†
i =

(
a b

√
1− λ(t)

c
√

1− λ(t) d

)
.

The parameterization λ(t) = 1− e−Γt assures that as t→∞, the off-diagonal elements vanish.
With the notation Lµ = {Kµ,K±µ }, we define the composition of the map Φ = {Φo,Φ±} with the map ΦPD

describing PD dynamics. We denote the composite map Et←t0 = [Φ ◦ ΦPD]t←t0 , such that

ρ(t) = Et←t0ρ(t0) = [Φ ◦ ΦPD]t←t0ρ(t0) =

2∑
µ,ν=1

PµLνρ(t0)L†νP
†
µ. (18)

With |ψ(t0 = 0)〉 = cos(θs) |0〉+ sin(θs) |1〉, we have

ρ(t) =
1

2

(
1 + cos(θs) cos2(ωt)

√
1 − λ(t)

[
cos(ωt) sin(θs) + i sin(ωt) cos(θs)

]√
1 − λ(t)

[
cos(ωt) sin(θs) − i sin(ωt) cos(θs)

]
1 − cos(θs) cos2(ωt)

)
. (19)

In the limit ω → 0 the dynamics reduces to PD which is Markovian, while as for Γ → 0 (and hence λ(t) → 0),
we obtain the purely JC-type non-Markovian dynamics. Further, the PD is derived assuming a stationary (infinite)
bath, and hence the channel is not modified after intervention.

C. Classical non-Markovian model

Next, we consider a class of semi-Markov processes that exhibit memory in the classical regime and investigate
their impact on LGI violation in the next section. We take up a two dimensional system which can jump from one
state to another with certain probability. Such a process can be characterized by the following stochastic matrix [61]

Q(τ) =

(
1− π π
π 1− π

)
f(τ) = Πf(τ). (20)

Here, 0 ≤ π ≤ 1 is the probability to jump from one site to another and f(τ) is an arbitrary waiting time distribution

and associated survival probability g(t) = 1 −
∫ t

0
dτf(τ). It is often convenient to introduce the function q(t) which

is an inverse Laplace transform of the quantity q̃(u) = 1
u

1−f̃(u)

1+f̃(u)
, where x̃(u) =

∫ +∞
0

dτx(τ)e−uτ , is the Laplace

transform of x(τ). Such a process can be shown to be Markovian if and only if the waiting time distribution is given
by exponential time distributions of the form f(τ) = λe−λτ , and non-Markovian otherwise.

A specific example is now considered in which the waiting time distribution is not an exponential but given as
f(t) = 2pse

−st/2 1
ξ sinh(ξst/2), with g(t) = e−st/2

[
cosh(ξst/2) + 1

ξ sinh(ξst/2)
]
, and q(t) = e−st/2

[
cosh(χst/2) +

1
χ sinh(χst/2)

]
. This comes from the convolution of two exponential waiting time distributions with different param-

eters λ1 and λ2. Here, s = λ1 + λ2, p = λ1λ2, ξ =
√

1− 4 p
s2 , and χ =

√
1− 8 p

s2 . A quantum counterpart of the
classical semi-Markov process via. a purely dephasing dynamics is governed by the master equation

d

dt
ρ(t) = γ(t)Lz[ρ], with Lz[ρ] = σzρσz − ρ, and γ(t) = −1

2

q̇(t)

q(t)
. (21)

Such dynamics can be described by a completely positive and trace preserving map characterized by Kraus operators

C1 =

√
1 + q(t)

2
1, and C2 =

√
1− q(t)

2
σz. (22)

The map, for p ≤ s2

8 , as used here, turns out to be Markovian according to the trace distance and divisibility measures
despite being non-Markovian classically.
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Figure 3: (color online) (a) The Leggett-Garg parameter as defined in Eq. (23), for K3 > 1, with correlation functions given
by Eq. (26), is depicted with respect to time interval τ between the successive measurements and the measurement variable
θ (with φ = 0). The state variables used in this case are θs = π/2, φs = 0. Further, we choose Γ = 0 pertaining to the case
when PD becomes an identity operation and the dynamics is entirely governed by Hamiltonian H in Eq. (5), which generates
a non-Markovian subsystem dynamics. The violation reaches to the quantum bound 3/2 in this case. (b) The parameter K3 is
shown for Γ = 0 and ω = 1 with solid (blue) curve. The dot-dashed (black) curve corresponds to the case when ω = 1 (presence
of JC-like model) and Γ = 0.5. The dashed (red) curve shows the scenario when ω = 0 (absence of JC-like model), and Γ = 5.
It is clear that for small Γ, the non-Markovian part governed by Hamiltonian H dominates leading to the violation of LGI. The
various parameters used are θs = θ = π/2, and φs = φ = 0. (c) The complementary form of LGI obtained by flipping the sign
of observable (as explained in text) leading to K′3 = −C(0, τ) − C(τ, 2τ) − C(0, 2τ) ≤ 1. The various parameters used and the
corresponding curve-nomenclature is same as in (b). (d) The coherence parameter C as defined in Eq. (27), is depicted with
respect to t. The characteristic recurrent behavior is observed in non-Markovian regime. The nomenclature of various curves
and the parameters used are same as in (b).

III. LEGGETT-GARG INEQUALITY

In this section, we study the violation of the LGI in the above discussed model. Assuming t0 = 0 and a constant
time difference τ between successive measurements, the three time LGI becomes

K3 = C(0, τ) + C(τ, 2τ)− C(0, 2τ) ≤ 1, (23)

where C(ti, tj), as defined in Eq. (2), can be computed as

C(ti, tj) =
∑
a,b=±

ab p(ati)q(
btj |ati) =

∑
a,b=±

abTr
{

ΠbEtj←ti
[
Πaρ(ti)Π

a
]}
, (24)

with E being the composite map defined in Eq. (18). Here, Π± are the projectors corresponding to a general
dichotomic operator

O =

(
cos(θ) eiφ sin(θ)

e−iφ sin(θ) − cos(θ)

)
. (25)

parametrized by −π ≤ θ < π; - π/2 ≤ φ ≤ π/2 [62]. We assume the system is initiated in a pure state |ψ(0)〉 =
cos(θs/2) |0〉 + eiφs sin(θs/2) |1〉, with 0 ≤ θs ≤ π; 0 ≤ φs < 2π. The subsequent dynamics is then governed by the
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composite map E defined above. For simplicity, we choose φs = φ = 0, and find the two-time correlation functions

C(0, t) = cos2(θ) cos2(ωτ) + cos(ωτ) sin2(θ)
√

1− λ(τ)

+
1

2
cos(θ − θs) sin(2θ) sin2(ωτ)[cos(ωτ)−

√
1− λ(τ)],

C(t, 2t) = cos2(ωτ) cos2(θ)[1 + cos(θs) sin(θ) cos(ωτ) sin2(ωτ)]

+ cos(ωτ) sin2(θ)
√

1− λ(τ)− 1

2
cos(θ + θs) sin(2θ) cos2(ωτ) sin2(ωτ)

√
1− λ(τ)

+
1

2
sin(θ) sin(2θ) sin(θs) cos(ωτ) sin2(ωτ)[−1 + λ(τ)], (26)

where λ(τ) = 1−exp(−Γτ) as defined in the previous section, is the channel parameter for PD channel. It follows that
for λ = 0 (i.e., Γ = 0), the PD Kraus operators P1 = 1, P2 = 0; we call this a trivial operation from the composite
map’s perspective, i.e., in this case only the evolution generated by Hamiltonian H in Eq. (5) is considered. Note
that (θs, φs) and (θ, φ) are the state and measurement variables, respectively. For θ = π/2, the expressions simplify

to C(0, τ) = C(τ, 2τ) = cos(ωτ)
√

1− λ(τ), yielding K3 = 2 cos(ωτ)
√

1− λ(τ) − cos(2ωτ)
√

1− λ(2τ), and reaches
its maximum quantum bound 3/2 only if λ(τ) = 0, i.e., when PD is a trivial operation. However, when PD is not

a trivial operation, the function
√

1− λ(τ) = exp(−Γτ/2) falls monotonically with time, and therefore reduces the
extent of violation such that in the pure Markovian limit, no violation is observed.

Figure (3) depicts the violations of the LGI for various state and measurement settings. Thus for example, from the
perspective of LGI violations, we see that given fixed measurement settings, some state preparations are preferable
over the others. Also, with fixed state preparation, some measurements are more favorable for the purpose. Further,
the non-Markovian dynamics favors the violation of LGI in comparison to Markovian dynamics, as can be seen, for
example, from a comparison of the blue (pure non-Markovian) and the red (pure Markovian) curves in Fig. (3)
(b)-(c). The enhanced violation of LGI in non-Markovian regime can be attributed to the information backflow in the
non-Markovian case, which counteracts the effect of decoherence, thereby enhancing the quantumness of the system’s
evolution. This is bolstered by the fact that the coherence shows a recurrent behavior in the non-Markovian case and
falls monotonically in the Markovian scenario, as shown in Fig. (3) (d). The coherence is quantified here by l1-norm

C =
∑
i 6=j

|ρij(t)|, (27)

where ρij(t) is the ij-th element of ρ(t) defined in Eq. (19). The maximum violation of LGI is found to occur
at τ = π/3, 5π/3. It is worth mentioning here that a complementary inequality corresponding to Eq. (23) can be
obtained by switching the sign of the observable O→ −O leading to K ′3 = −C(0, τ)− C(τ, 2τ)− C(0, 2τ) ≤ 1. This
inequality shows the maximum violation (not depicted here) at τ = 2π/3, 4π/3.

In order to see the effect of processes that are non-Markovian classically, on the violation of LGI, we make use of
the model spelled out in the last section and characterized by the Kraus operators given in Eq. (22). With initial
state |ψ(0)〉 = cos(θs) |0〉 + e−iφs sin(θs) |1〉 and the general dichotomic observable given in Eq. (25), the two time
correlation functions turn out to be

4C(0, τ) = 2 cos(2θ) + sin(θ) sin(θs)(q(τ) + 1) cos(φ+ φs)

+ cos(θ) cos(θs)(q(τ) + 1)− 2 cos(2θ)q(τ) + q(τ) + 1,

4C(τ, 2τ) = cos(θ) cos(θs) + 2 cos(2θ) + q(τ)(cos(θ) cos(θs)

− 2 cos(2θ) + sin(θ) sin(θs)(q(τ) + 1) cos(φ+ φs) + 1) + 1. (28)

Figure (4) depicts the violations of the LGI for various state and measurement settings, for the quantum semi-Markov
process. Violation of LGI is observed in this model, albeit smaller in comparison to the violation of upto maximum
quantum bound in a purely quantum non-Markovian system dynamics generated by Hamiltonian H in Eq. (5),
depicted in Fig. (3) (a). Although there is no information backflow in this case and thus no recoherence, yet the
deviation of the semi-Markovian dynamics from the quantum semigroup structure leads to a relative lowering of
decoherence [63], which is conducive to a higher level of violation.

IV. CONCLUSION

The violation of the LGI under non-Markovian evolution has been studied by using the reduced dynamics. Diffi-
culties in handling the two-time correlation functions under non-Markovian evolution were highlighted and a possible
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0

0.5

1
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3

Figure 4: (Color online) Leggett Garg parameter K3 = C(0, τ) + C(τ, 2τ) − C(0, 2τ) with two time correlations given in Eq.
(28), for χ = 1 (blue solid curve), χ = 0.5 (red dashed curve) and χ = 0 (black dot-dashed curve). The parameters used are
θs = θ = π/2, φs = φ = 0. The maximum violation for these parameters is about 1.1 compared to 1.5 observed in case of
JC-like model.

way of handling them was illustrated by a simple model. The non-Markovian nature of the model was characterized
by negative eigenvalues of the Choi matrix implying CP-indivisibility. The increase in the trace distance function with
time brought out the P-indivisibility of the map. The non-Markovian dynamics involves setting up of system-bath
correlations; and measurements disrupt these correlations. Therefore, a full system-bath Hamiltonian approach is
natural. However, we have pointed out how the problem can be dealt with from a reduced dynamics perspective.
The key point is that the noise superoperator acting on the system must be suitably updated after a measurement
intervention. Further, the behavior of LGI violations is compared in Markovain and non-Markovian regimes. It is
found that LGI shows violation upto maximum quantum bound in the later case, with no violations in pure Marko-
vian limit. This can be attributed to the fact that non-Markovian dynamics brings memory effects which in turn are
exhibited by the recurrent behavior of various quantum features like coherence. We also considered a model in which
the underlying classical dynamics is non-Markovian, however, when extended to quantum regime, the dynamical map
turns out to be CP divisible and hence Markovian from this perspective. One finds violation of LGI in this model,
albeit smaller in comparison to the violation upto maximum quantum bound in a purely quantum non-Markovian
model.
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