Abstract
The Leggett–Garg inequalities impose restrictions on the values taken by some combinations of the two-time correlation functions of observables in order to be explainable by a noninvasive realist classical model. While in the unitary dynamics, it is straightforward to compute these correlation functions, open system effects bring in subtleties. Specifically, for non-Markovian dynamics, which involves setting up of system–bath correlations, the Leggett–Garg measurements disrupt these correlations, making a full system–bath Hamiltonian approach natural. However, here we point out that the problem can also be dealt with from a reduced dynamics perspective. The key point is that the noise superoperator acting on the system must be suitably updated after measurement interventions. Also considered is the effect of Markovian versus non-Markovian behavior as well as classically non-Markovian processes on the violation of Leggett–Garg inequalities.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1, 195 (1964)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555–563 (1935)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Adhikari, S., Banerjee, S.: Operational meaning of discord in terms of teleportation fidelity. Phys. Rev. A 86, 062313 (2012)
Banerjee, S., Alok, A.K., MacKenzie, R.: Quantum correlations in B and K meson systems. Eur. Phys. J. Plus 131, 129 (2016)
Alok, A.K., Banerjee, S., Sankar, S.U.: Quantum correlations in terms of neutrino oscillation probabilities. Nucl. Phys. B 909, 65 (2016)
Banerjee, S., Alok, A.K., Srikanth, R., Hiesmayr, B.C.: A quantum-information theoretic analysis of three-flavor neutrino oscillations. Eur. Phys. J. C 75, 487 (2015)
Alok, A.K., Banerjee, S., Sankar, S.U.: Re-examining sin 2\(\beta \) and \(\Delta \)md from evolution of Bd0 mesons with decoherence. Phys. Lett. B 749, 94 (2015)
Chakrabarty, I., Banerjee, S., Siddharth, N.: A study of quantum correlations in open quantum systems. Quantum Inf. Comput. 11, 0541 (2011)
Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Eur. Phys. J. D 56, 277 (2010)
Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Ann. Phys. 325, 816 (2010)
Dijkstra, A.G., Tanimura, Y.: Non-Markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett. 104, 250401 (2010)
Kaer, P., Nielsen, T.R., Lodahl, P., Jauho, A.-P., Mørk, J.: Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system. Phys. Rev. Lett. 104, 157401 (2010)
Mirza, I.M.: Controlling tripartite entanglement among optical cavities by reservoir engineering. J. Modern Opt. 62, 1048 (2015)
Mirza, I.M., Schotland, J.C.: Multiqubit entanglement in bidirectional-chiral-waveguide QED. Phys. Rev. A 94, 012302 (2016)
Jiang, W., Wu, F.-Z., Yang, G.-J.: Non-Markovian entanglement dynamics of open quantum systems with continuous measurement feedback. Phys. Rev. A 98, 052134 (2018)
Naikoo, J., Thapliyal, K., Pathak, A., Banerjee, S.: Probing nonclassicality in an optically driven cavity with two atomic ensembles. Phys. Rev. A 97, 063840 (2018)
Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)
Tittel, W., Brendel, J., Gisin, B., Herzog, T., Zbinden, H., Gisin, N.: Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A 57, 3229 (1998)
Lanyon, B., Jurcevic, P., Hempel, C., Gessner, M., Vedral, V., Blatt, R., Roos, C.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013)
Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998)
Barbieri, M.: Multiple-measurement leggett-garg inequalities. Phys. Rev. A 80, 034102 (2009)
Avis, D., Hayden, P., Wilde, M.M.: Leggett–Garg inequalities and the geometry of the cut polytope. Phys. Rev. A 82, 030102 (2010)
Lambert, N., Emary, C., Chen, Y.-N., Nori, F.: Distinguishing quantum and classical transport through nanostructures. Phys. Rev. Lett. 105, 176801 (2010)
Lambert, N., Johansson, R., Nori, F.: Macrorealism inequality for optoelectromechanical systems. Phys. Rev. B 84, 245421 (2011)
Emary, C., Lambert, N., Nori, F.: Leggett–Garg inequalities. Rep. Prog. Phys. 77, 016001 (2013)
Kofler, J., Brukner, Č.: Condition for macroscopic realism beyond the Leggett–Garg inequalities. Phys. Rev. A 87, 052115 (2013)
Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985)
Montina, A.: Dynamics of a qubit as a classical stochastic process with time-correlated noise: minimal measurement invasiveness. Phys. Rev. Lett. 108, 160501 (2012)
Emary, C.: Leggett–Garg inequalities for the statistics of electron transport. Phys. Rev. B 86, 085418 (2012)
Emary, C.: Decoherence and maximal violations of the Leggett–Garg inequality. Phys. Rev. A 87, 032106 (2013)
Naikoo, J., Alok, A.K., Banerjee, S., Sankar, S.U., Guarnieri, G., Schultze, C., Hiesmayr, B.C.: A quantum information theoretic quantity sensitive to the neutrino mass-hierarchy. Nucl. Phys. B 951, 114872 (2020)
Naikoo, J., Alok, A.K., Banerjee, S.: Study of temporal quantum correlations in decohering B and K meson systems. Phys. Rev. D 97, 053008 (2018)
Mal, S., Das, D., Home, D.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Phys. Rev. A 94, 062117 (2016)
Naikoo, J., Banerjee, S.: Entropic Leggett–Garg inequality in neutrinos and B (K) meson systems. Eur. Phys. J. C 78, 602 (2018)
Palacios-Laloy, A., Mallet, F., Nguyen, F., Bertet, P., Vion, D., Esteve, D., Korotkov, A.N.: Experimental violation of a Bell’s inequality in time with weak measurement. Nat. Phys. 6, 442 (2010)
Goggin, M., Almeida, M., Barbieri, M., Lanyon, B., Obrien, J., White, A., Pryde, G.: Violation of the Leggett-Garg inequality with weak measurements of photons. Proc. Natl. Acad. Sci. 108, 1256 (2011)
Xu, J.-S., Li, C.-F., Zou, X.-B., Guo, G.-C.: Experimental violation of the Leggett–Garg inequality under decoherence. Sci. Rep. 1, 101 (2011)
Dressel, J., Broadbent, C., Howell, J., Jordan, A.N.: Experimental violation of two-party Leggett–Garg inequalities with semiweak measurements. Phys. Rev. Lett. 106, 040402 (2011)
Suzuki, Y., Iinuma, M., Hofmann, H.F.: Violation of Leggett–Garg inequalities in quantum measurements with variable resolution and back-action. New J. Phys. 14, 103022 (2012)
Athalye, V., Roy, S.S., Mahesh, T.: Investigation of the Leggett–Garg inequality for precessing nuclear spins. Phys. Rev. Lett. 107, 130402 (2011)
Katiyar, H., Shukla, A., Rao, K.R.K., Mahesh, T.: Violation of entropic Leggett–Garg inequality in nuclear spins. Phys. Rev. A 87, 052102 (2013)
Aravinda, S., Srikanth, R.: On a general criterion for nonclassicality from a signaling perspective, arXiv:1211.6407 ( 2012)
Fritz, T.: Quantum correlations in the temporal Clauser–Horne–Shimony–Holt (CHSH) scenario. New J. Phys. 12, 083055 (2010)
Kumari, S., Pan, A.: Probing various formulations of macrorealism for unsharp quantum measurements. Phys. Rev. A 96, 042107 (2017)
Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014)
Kumar, N.P., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian evolution: a quantum walk perspective. Open Syst. Inf. Dyn. 25, 1850014 (2018)
Omkar, S., Srikanth, R., Banerjee, S.: The operator-sum-difference representation of a quantum noise channel. Quantum Inf. Process. 14, 2255 (2015)
Chen, S.-L., Lambert, N., Li, C.-M., Miranowicz, A., Chen, Y.-N., Nori, F.: Quantifying non-Markovianity with temporal steering. Phys. Rev. Lett. 116, 020503 (2016)
Goan, H.-S., Chen, P.-W., Jian, C.-C.: Non-Markovian finite-temperature two-time correlation functions of system operators: beyond the quantum regression theorem. J. Chem. Phys. 134, 124112 (2011)
Chen, P.-W., Ali, M.M.: Investigating Leggett-Garg inequality for a two level system under decoherence in a non-Markovian dephasing environment. Sci. Rep. 4, 6165 (2014)
Ban, M.: Violation of the quantum regression theorem and the Leggett–Garg inequality in an exactly solvable model. Phys. Lett. A 381, 2313 (2017)
Swain, S.: Master equation derivation of quantum regression theorem. J. Phys. A Math. Gen. 14, 2577 (1981)
Guarnieri, G., Smirne, A., Vacchini, B.: Quantum regression theorem and non-Markovianity of quantum dynamics. Phys. Rev. A 90, 022110 (2014)
Nielsen, M. A., Chuang, I.: Quantum computation and quantum information ( 2002)
Budini, A.A.: Stochastic representation of a class of non-Markovian completely positive evolutions. Phys. Rev. A 69, 042107 (2004)
Breuer, H.-P., Petruccione, F., et al.: The Theory of Open Quantum Systems. Oxford University Press on Demand, Oxford (2002)
Kraus, K., Böhm, A., Dollard, J. D., Wootters, W.: States, effects, and operations: fundamental notions of quantum theory. Lectures in mathematical physics at the University of Texas at Austin, Lecture notes in physics 190 ( 1983)
Sudarshan, E., Mathews, P., Rau, J.: Stochastic dynamics of quantum-mechanical systems. Phys. Rev. 121, 920 (1961)
Vacchini, B., Smirne, A., Laine, E.-M., Piilo, J., Breuer, H.-P.: Markovianity and non-Markovianity in quantum and classical systems. New J. Phys. 13, 093004 (2011)
Murnaghan, F. D.: The unitary and rotation groups. The unitary and rotation groups, Vol. 3 (Spartan books, 1962)
Utagi, S., Srikanth, R., Banerjee, S.: Temporal self-similarity of quantum dynamical maps as a concept of memorylessness. Sci. Rep. 10, 1 (2020)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Naikoo, J., Banerjee, S. & Srikanth, R. Effect of memory on the violation of Leggett–Garg inequality. Quantum Inf Process 19, 408 (2020). https://doi.org/10.1007/s11128-020-02905-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02905-0