Skip to main content
Log in

High-dimensional measurement-device-independent quantum secure direct communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secure direct communication is an important communication mode of quantum communications. Its development and application are mainly limited by the channel capacity and channel loss. Here, in this paper, a high-dimensional measurement-device-independent quantum secure direct communication protocol is proposed. The quantum information is encoded on the spatial mode of the photons which enlarges the coding Hilbert space and results in the high efficiency, feasibility with existing technique, and tolerance of channel noise. Based on realistic experimental parameters, the efficiency of communications is analytically derived and numerically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H.B.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, IEEE, New York, p. 175 (1984)

  2. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)

    Article  ADS  Google Scholar 

  4. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  5. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  6. Mayers, D.: Unconditional security in quantum cryptography. JACM 48, 351–406 (2001)

    Article  MathSciNet  Google Scholar 

  7. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  8. Acín, A., Brunner, N., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  9. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  10. Ferreira da Silva, T., Vitoreti, D., von der Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88, 052303 (2013)

    Article  ADS  Google Scholar 

  11. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400 (2018)

    Article  ADS  Google Scholar 

  12. Hillery, M., Buek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46, 045304 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  15. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  16. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  17. Zhou, Z.R., Sheng, Y.B., PengHao, N., Yin, L.G., Long, G.L., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)

    Article  Google Scholar 

  18. Zhou, L., Sheng, Y.-B., Long, G.-L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12 (2020)

    Article  Google Scholar 

  19. Pan, D., Lin, Z., Wu, J., Sun, Z., Ruan, D., Yin, L., Long, G.: Experimental free-space quantum secure direct communication and its security analysis. arXiv:2005.05102

  20. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  21. Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  22. Hu, J.-Y., Bo, Yu., Jing, M.-Y., Xiao, L.-T., Jia, S.-T., Qin, G.-Q., Long, G.-L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  23. Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519 (2017)

    Article  Google Scholar 

  24. Qi, R., Sun, Z., Lin, Z., Niu, P., Hao, W., Song, L., Huang, Q., Gao, J., Yin, L., Long, G.-L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, 1 (2019)

    Article  Google Scholar 

  25. Fung, C.-H.F., Qi, B., Tamaki, K., Lo, H.-K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)

    Article  ADS  Google Scholar 

  26. Zhao, Y., Fung, C.-H.F., Lo, H.-K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008)

    Article  ADS  Google Scholar 

  27. Lydersen, L., Wiechers, C., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686 (2010)

    Article  ADS  Google Scholar 

  28. Feihu, X., Qi, B., Lo, H.-K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12, 113026 (2010)

    Article  Google Scholar 

  29. Biham, E., Mor, T.: Security of quantum cryptography against collective attacks. Phys. Rev. Lett. 78, 2256 (1997)

    Article  ADS  Google Scholar 

  30. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54, 1355 (1975)

    Article  MathSciNet  Google Scholar 

  31. Bennett, C.H.B.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  32. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)

    Article  ADS  Google Scholar 

  33. Renner, R., Nicolas, G., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  34. Nielsen, M.A., Chuang, I.L.: Quantum information and quantum computation, vol. 2. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  35. Dellantonio, L., Sørensen, A.S., Bacco, D.: High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Phys. Rev. A 98, 062301 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Project funded by the Fundamental Research Funds for the Central Universities (BNU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Niu, JL., Fan, CR. et al. High-dimensional measurement-device-independent quantum secure direct communication. Quantum Inf Process 19, 404 (2020). https://doi.org/10.1007/s11128-020-02908-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02908-x

Keywords

Navigation