Skip to main content
Log in

Analysis of efficient and secure dynamic quantum secret sharing protocol based on Bell states

  • Comment
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Dynamic secret sharing can deal with the problems of both adding agents and revoking ones, which makes it more practical and flexible compared with general secret sharing. In this work, we analyze an efficient and secure dynamic quantum secret sharing protocol based on Bell states, and find that there is an unnoticed problem that it does not satisfy the requirement for dynamic secret sharing in the sense that if the access structure has been completed, then both adding an agent and revoking one become impossible by the way in this protocol; or else if adding an agent or revoking one can be realized, then the previous access structure has not been implemented in fact. Furthermore, we discuss how to solve this problem and give a possible way to improve this protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Shamir, A.: How to shair a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  Google Scholar 

  3. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  4. Schmid, C., Trojek, P., Bourennane, M., et al.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)

    Article  ADS  Google Scholar 

  5. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis of the Hillery–Bužek–Berthiaume quantum secret sharing protocol. Phys. Rev. A 76(6), 062324 (2007)

    Article  ADS  Google Scholar 

  6. Wang, T.Y., Wen, Q.Y., Chen, X.B., et al.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281(24), 6130–6134 (2008)

    Article  ADS  Google Scholar 

  7. Sun, Y., Wen, Q.Y., Gao, F., et al.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)

    Article  ADS  Google Scholar 

  8. Shi, R.H., Huang, L.S., Yang, W., et al.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(11), 2476–2480 (2010)

    Article  ADS  Google Scholar 

  9. Shi, J.J., Shi, R.H., Tang, Y., et al.: A multiparty quantum proxy group signature scheme for the entangled-state message with quantum Fourier transform. Quantum Inf. Process. 10(5), 653–670 (2011)

    Article  MathSciNet  Google Scholar 

  10. Li, Q., Long, D.Y., Chan, W.H., et al.: Sharing a quantum secret without a trusted party. Quantum Inf. Process. 10(1), 97–106 (2011)

    Article  MathSciNet  Google Scholar 

  11. Song, T.T., Zhang, J., Gao, F.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18(4), 1333–1337 (2009)

    Article  ADS  Google Scholar 

  12. Wang, T.Y., Liu, Y.Z., Wei, C.Y., et al.: Security of a kind of quantum secret sharing with entangled states. Sci. Rep. 7, 2485 (2017)

    Article  ADS  Google Scholar 

  13. Zhou, Y., Yu, J., Yan, Z., et al.: Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys. Rev. Lett. 121(15), 150502 (2018)

    Article  ADS  Google Scholar 

  14. Cai, X.Q., Wang, T.Y., Zhang, R.L., et al.: Security of verifiable threshold quantum secret sharing with sequential communication. IEEE Access 7, 134854–134860 (2019)

    Article  Google Scholar 

  15. Yuan, J.T., Li, L.X.: A fully dynamic secret sharing scheme. Inf. Sci. 496, 42–52 (2019)

    Article  MathSciNet  Google Scholar 

  16. Yang, Y.G., Wang, Y., Chai, H.P., et al.: Member expansion in quantum (t, n) threshold secret sharing schemes. Opt. Commun. 284(13), 3479–3482 (2011)

    Article  ADS  Google Scholar 

  17. Jia, H.Y., Wen, Q.Y., Gao, F., et al.: Dynamic quantum secret sharing. Phys. Lett. A 376(10–11), 1035–1041 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hsu, J.L., Chong, S.K., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12(1), 331–344 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process. 12(5), 1991–1997 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13(8), 1907–1916 (2014)

    Article  ADS  Google Scholar 

  21. Mishra, S., Shukla, C., Pathak, A., et al.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54(9), 3143–3154 (2015)

    Article  Google Scholar 

  22. Liu, H.W., Ma, H.Q., Wei, K.J.: Multi-group dynamic quantum secret sharing with single photons. Phys. Lett. A 380, 2349–2353 (2016)

    Article  ADS  Google Scholar 

  23. Qin, H., Dai, Y.: Dynamic quantum secret sharing by using d-dimensional GHZ state. Quantum Inf. Process. 16(3), 64 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Du, Y.T., Bao, W.S.: Dynamic quantum secret sharing protocol based on two-particle transform of Bell states. Chin. Phys. B 27(8), 080304 (2018)

    Article  ADS  Google Scholar 

  25. Song, Y., Li, Z.H., Li, Y.M.: A dynamic multiparty quantum direct secret sharing based on generalized GHZ states. Quantum Inf. Process. 17(9), 244 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Gao, G.: Cryptanalysis and improvement of dynamic quantum secret sharing protocol based on two-particle transform of Bell states. Quantum Inf. Process. 18(6), 186 (2019)

    Article  ADS  Google Scholar 

  27. Yang, C.W., Tsai, C.W.: Improved dynamic multiparty quantum direct secret sharing protocol based on generalized GHZ states to prevent collusion attack. Mod. Phys. Lett. A 35(8), 2050040 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Yang, C.W., Tsai, C.W.: Participant attack and improving dynamic quantum secret sharing using d-dimensional GHZ state. Mod. Phys. Lett. A 35(6), 2050024 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, M.M., Kong, X.Y.: An asymmetric dynamic multiparty quantum secret sharing against active attacks. Int. J. Quantum Inf. 18(3), 2050001 (2020)

    Article  MathSciNet  Google Scholar 

  30. Yang, C.W., Tsai, C.W.: Eficient and secure dynamic quantum secret sharing protocol based on Bell states. Quantumm Inf. Process. 19, 162 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers and the editor for their very valuable comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61602232, 61572246, 61902166), the Program for Science & Technology Innovation Research Team in Universities of Henan Province (Grant No. 18IRTSTHN014), the Postgraduate Education Reform Project of Henan Province (Grant No. 2019SJGLX094Y), the Key Scientific Research Project in Universities of Henan Province (Grant No. 21A110017), and the Youth Key Teacher Project of Luoyang Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TY., Wang, XX., Cai, XQ. et al. Analysis of efficient and secure dynamic quantum secret sharing protocol based on Bell states. Quantum Inf Process 20, 7 (2021). https://doi.org/10.1007/s11128-020-02916-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02916-x

Keywords

Navigation