Skip to main content
Log in

Optical response based on Stokes and anti-Stokes scattering processes in cavity optomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the optical response of the probe output field in a three-mode cavity optomechanical system, in which both the optical modes are coupled to the same mechanical oscillator. The optomechanically induced transparency and amplification effects can be achieved by controlling the optomechanical interaction in the auxiliary optical mode. With the tunneling interaction between two optical modes, we not only observe the Fano and optical absorption effects in the red-detuned regime but also find two controllable singular points representing the considerable optical amplification effect in the blue-detuned regime and analyze the conversion between fast light and slow light. These optical properties of the probe output field may benefit forward achieving the potential applications in coherent control of laser pulse and optical storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Poot, M., van der Zant, H.S.: Mechanical systems in the quantum regime. Phys. Rep. 511, 273–335 (2012)

    Article  ADS  Google Scholar 

  2. Teufel, J.D., Harlow, J.W., Regal, C.A., Lehnert, K.W.: Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008)

    Article  ADS  Google Scholar 

  3. Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)

    Article  ADS  Google Scholar 

  4. Bai, C.H., Wang, D.Y., Wang, H.F., Zhu, A.D., Zhang, S.: Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction. Sci. Rep. 7, 2545 (2017)

    Article  ADS  Google Scholar 

  5. Rocheleau, T., Ndukum, T., MacKlin, C., Hertzberg, J.B., Clerk, A.A., Schwab, K.C.: Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2010)

    Article  ADS  Google Scholar 

  6. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)

    Article  ADS  Google Scholar 

  7. Guo, Y., Li, K., Nie, W., Li, Y.: Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A 90, 053841 (2014)

    Article  ADS  Google Scholar 

  8. Gigan, S., Böhm, H.R., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J.B., Schwab, K.C., Bäuerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006)

    Article  ADS  Google Scholar 

  9. Kepesidis, K.V., Bennett, S.D., Portolan, S., Lukin, M.D., Rabl, P.: Phonon cooling and lasing with nitrogen-vacancy centers in diamond. Phys. Rev. B 88, 064105 (2013)

    Article  ADS  Google Scholar 

  10. Liu, Y.M., Bai, C.H., Wang, D.Y., Wang, T., Zheng, M.H., Wang, H.F., Zhu, A.D., Zhang, S.: Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble. Opt. Express 26, 6143–6157 (2018)

    Article  ADS  Google Scholar 

  11. Lü, X.Y., Liao, J.Q., Tian, L., Nori, F.: Steady-state mechanical squeezing in an optomechanical system via duffing nonlinearity. Phys. Rev. A 91, 013834 (2015)

    Article  ADS  Google Scholar 

  12. Wang, D.Y., Bai, C.H., Wang, H.F., Zhu, A.D., Zhang, S.: Steady-state mechanical squeezing in a double-cavity optomechanical system. Sci. Rep. 6, 38559 (2016)

    Article  ADS  Google Scholar 

  13. Wang, D.Y., Bai, C.H., Wang, H.F., Zhu, A.D., Zhang, S.: Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity. Sci. Rep. 6, 24421 (2016)

    Article  ADS  Google Scholar 

  14. Agarwal, G.S., Huang, S.: Strong mechanical squeezing and its detection. Phys. Rev. A 93, 043844 (2016)

    Article  ADS  Google Scholar 

  15. Hartmann, M.J., Plenio, M.B.: Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008)

    Article  ADS  Google Scholar 

  16. Vitali, D., Gigan, S., Ferreira, A., Böhm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  17. Mari, A., Eisert, J.: Gently modulating optomechanical systems. Phys. Rev. Lett. 103, 213603 (2009)

    Article  ADS  Google Scholar 

  18. Liao, J.Q., Wu, Q.Q., Nori, F.: Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A 89, 014302 (2014)

    Article  ADS  Google Scholar 

  19. Liao, C.G., Chen, R.X., Xie, H., Lin, X.M.: Reservoir-engineered entanglement in a hybrid modulated three-mode optomechanical system. Phys. Rev. A 97, 042314 (2018)

    Article  ADS  Google Scholar 

  20. Li, J., Haghighi, I.M., Malossi, N., Zippilli, S., Vitali, D.: Generation and detection of large and robust entanglement between two different mechanical resonators in cavity optomechanics. New J. Phys. 17, 103037 (2015)

    Article  ADS  Google Scholar 

  21. Chen, R.X., Shen, L.T., Yang, Z.B., Wu, H.Z., Zheng, S.B.: Enhancement of entanglement in distant mechanical vibrations via modulation in a coupled optomechanical system. Phys. Rev. A 89, 023843 (2014)

    Article  ADS  Google Scholar 

  22. Hofer, S.G., Wieczorek, W., Aspelmeyer, M., Hammerer, K.: Quantum entanglement and teleportation in pulsed cavity optomechanics. Phys. Rev. A 84, 052327 (2011)

    Article  ADS  Google Scholar 

  23. Bai, C.H., Wang, D.Y., Wang, H.F., Zhu, A.D., Zhang, S.: Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system. Sci. Rep. 6, 33404 (2016)

    Article  ADS  Google Scholar 

  24. Qiu, L., Gan, L., Ding, W., Li, Z.Y.: Single-photon generation by pulsed laser in optomechanical system via photon blockade effect. J. Opt. Soc. Am. B 30, 1683–1687 (2013)

    Article  ADS  Google Scholar 

  25. Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015)

    Article  ADS  Google Scholar 

  26. Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012)

    Article  ADS  Google Scholar 

  27. Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.M.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 90, 043825 (2014)

    Article  ADS  Google Scholar 

  28. Wang, Q., Zhang, J.Q., Ma, P.C., Yao, C.M., Feng, M.: Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Phys. Rev. A 91, 063827 (2015)

    Article  ADS  Google Scholar 

  29. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  Google Scholar 

  30. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  31. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520–1523 (2010)

    Article  ADS  Google Scholar 

  32. Yan, X., Cui, C.L., Gu, K.H., Tian, X.D., Fu, C.B., Wu, J.H.: Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Opt. Express 22, 4886–4895 (2014)

    Article  ADS  Google Scholar 

  33. Du, L., Chen, Y.T., Li, Y., Wu, J.H.: Controllable optical response in a three-mode optomechanical system by driving the cavities on different sidebands. Opt. Express 27, 21843–21855 (2019)

    Article  ADS  Google Scholar 

  34. Jia, W.Z., Wei, L.F., Li, Y., Liu, Y.X.: Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator. Phy. Rev. A 91, 043843 (2015)

    Article  ADS  Google Scholar 

  35. He, Y.: Sensitivity of optical mass sensor enhanced by optomechanical coupling. Appl. Phys. Lett. 106, 121905 (2015)

    Article  ADS  Google Scholar 

  36. Stannigel, K., Komar, P., Habraken, S.J.M., Bennett, S.D., Lukin, M.D., Zoller, P., Rabl, P.: Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012)

    Article  ADS  Google Scholar 

  37. Rips, S., Hartmann, M.J.: Quantum information processing with nanomechanical qubits. Phys. Rev. Lett. 110, 120503 (2013)

    Article  ADS  Google Scholar 

  38. Bhattacharya, M., Meystre, P.: Multiple membrane cavity optomechanics. Phys. Rev. A 78, 041801 (2008)

    Article  ADS  Google Scholar 

  39. Wang, T., Zheng, M.H., Bai, C.H., Wang, D.Y., Zhu, A.D., Wang, H.F., Zhang, S.: Normal-mode splitting and optomechanically induced absorption, amplication, and transparency in a hybrid optomechanical system. Ann. Phys. 530(10), 1800228 (2018)

    Article  Google Scholar 

  40. Zhang, X.Y., Zhou, Y.H., Guo, Y.Q., Yi, X.X.: Double optomechanically induced transparency and absorption in parity-time-symmetric optomechanical system. Phys. Rev. A 98, 033832 (2018)

    Article  ADS  Google Scholar 

  41. Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011)

    Article  ADS  Google Scholar 

  42. Jing, H., Özdemir, S.K., Lü, X.Y., Zhang, J., Yang, L., Nori, F.: \(\cal{PT}\)-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014)

    Article  ADS  Google Scholar 

  43. Mahboob, I., Nishiguchi, K., Okamoto, H., Yamaguchi, H.: Phonon-cavity electromechanics. Nat. Phys. 8, 387–392 (2012)

    Article  Google Scholar 

  44. Mahboob, I., Nishiguchi, K., Fujiwara, A., Yamaguchi, H.: Phonon lasing in an electromechanical resonator. Phys. Rev. Lett. 110, 127202 (2013)

    Article  ADS  Google Scholar 

  45. Tchodimou, C., Djorwe, P., Engo, S.G.N.: Distant entanglement enhanced in \({\cal{PT}}\)-symmetric optomechanics, Phys. Rev. A 96, 033856 (2017)

    Article  ADS  Google Scholar 

  46. Liu, Y.L., Wu, R., Zhang, J., Özdemir, Ş.K., Yang, L., Nori, F., Liu, Y.X.: Controllable optical response by modifying the gain and loss of a mechanicalresonator and cavity mode in an optomechanical system. Phys. Rev. A 95, 013843 (2017)

    Article  ADS  Google Scholar 

  47. Hou, B.P., Wei, L.F., Wang, S.J.: Optomechanically induced transparency and absorption in hybridized optomechanical systems. Phys. Rev. A 92, 033829 (2015)

    Article  ADS  Google Scholar 

  48. Bhattacharya, M., Uys, H., Meystre, P.: Optomechanical trapping and cooling of partially reflective mirrors. Phys. Rev. A 77, 033819 (2008)

    Article  ADS  Google Scholar 

  49. Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)

    Article  ADS  Google Scholar 

  50. Yan, X.B., Jia, W.Z., Li, Y., Wu, J.H., Li, X.L., Mu, H.W.: Optomechanically induced amplication and perfect transparency in double-cavity optomechanics. Front. Phys. 10, 104202 (2015)

    Article  ADS  Google Scholar 

  51. Wang, T., Wang, L., Liu, Y.M., Bai, C.H., Wang, D.Y., Wang, H.F., Zhang, S.: Temperature-resistant generation of robust entanglement with blue-detuning driving and mechanical gain. Opt. Express 27, 29581–29593 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61822114, 61575055, 11874132, 12074330, and 62071412.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Fu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Bai, CH., Wang, DY. et al. Optical response based on Stokes and anti-Stokes scattering processes in cavity optomechanical system. Quantum Inf Process 20, 126 (2021). https://doi.org/10.1007/s11128-020-02940-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02940-x

Keywords

Navigation