Abstract
The fast and slow light effects of a transmitted probe light are researched in a hybrid atom–cavity optomechanical system, which is composed of an optical cavity, a mechanical resonator, and an atomic ensemble. The results show that the fast light generated in this hybrid system can be easily converted into slow light and vice versa, and that this fast–slow light conversion depends on a critical power of the control light, which corresponds to the fact that the probe light can be completely absorbed. Interestingly, this critical power can be modulated by changing the cavity coupling parameter or the atom–cavity coupling strength. Therefore, the fast–slow light conversion can be easily controlled.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Boyd, R.W., Gauthier, D.J.: Slow and fast light. Prog. Opt. 43, 497 (2002)
Phillips, D.F., Fleischhauer, A., Mair, A., Walsworth, R.L., Lukin, M.D.: Storage of light in atomic vapor. Phys. Rev. Lett. 86(5), 783 (2001)
Stack, D.T., Lee, P.J., Quraishi, Q.: Simple and efficient absorption filter for single photons from a cold atom quantum memory. Opt. Express 23(5), 6822 (2015)
Scheuer, J., Shahriar, M.S.: Trap-door optical buffering using a flat-top coupled microring filter: the superluminal cavity approach. Opt. Lett. 38(18), 3534 (2013)
Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(6720), 594 (1999)
Bae, I.H., Moon, H.S.: Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell. Phys. Rev. A 83(5), 053806 (2011)
Lee, Y.S., Lee, H.J., Moon, H.S.: Phase measurement of fast light pulse in electromagnetically induced absorption. Opt. Express 21(19), 22464 (2013)
Baba, T.: Slow light in photonic crystals. Nat. Photonics 2(8), 465 (2008)
Yannopapas, V., Paspalakis, E., Vitanov, N.V.: Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Phys. Rev. B 80(3), 035104 (2009)
Cabrera-Granado, E., Díaz, E., Calderón, O.G.: Slow light in molecular-aggregate nanofilms. Phys. Rev. Lett. 107(1), 013901 (2011)
Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391 (2014)
Marquardt, F., Girvin, S.M.: Optomechanics. Physics 2, 40 (2009)
Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330(6010), 1520 (2010)
Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature 471(7337), 204 (2011)
Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341), 69 (2011)
Jiang, C., Liu, H., Cui, Y., Li, X., Chen, G., Chen, B.: Electromagnetically induced transparency and slow light in two-mode optomechanics. Opt. Express 21(10), 12165 (2013)
Liu, Z.X., Wang, B., Kong, C., Xiong, H., Wu, Y.: Magnetic-field-dependent slow light in strontium atom-cavity system. Appl. Phys. Lett. 112(11), 111109 (2018)
Zhou, X., Hocke, F., Schliesser, A., Marx, A., Huebl, H., Gross, R., Kippenberg, T.J.: Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys. 9, 179 (2013)
Jiang, C., Cui, Y., Zhai, Z., Yu, H., Li, X., Chen, G.: Tunable slow and fast light in parity-time-symmetric optomechanical systems with phonon pump. Opt. Express 26(22), 28834 (2018)
Akram, M.J., Khan, M.M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A 92(2), 023846 (2015)
Wang, B., Liu, Z.X., Kong, C., Xiong, H., Wu, Y.: Mechanical exceptional-point-induced transparency and slow light. Opt. Express 27(6), 8069 (2019)
Wu, Z., Luo, R.H., Zhang, J.Q., Wang, Y.H., Yang, W., Feng, M.: Force-induced transparency and conversion between slow and fast light in optomechanics. Phys. Rev. A 96(3), 033832 (2017)
Agarwal, G.S., Dey, T.N., Menon, S.: Knob for changing light propagation from subluminal to superluminal. Phys. Rev. A 64(5), 053809 (2001)
Bigelow, M.S., Lepeshkin, N.N., Boyd, R.W.: Superluminal and slow light propagation in a room-temperature solid. Science 301(5630), 200 (2003)
Kim, K., Moon, H.S., Lee, C., Kim, S.K., Kim, J.B.: Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line. Phys. Rev. A 68(1), 013810 (2003)
Sahrai, M., Tajalli, H., Kapale, K.T., Suhail Zubairy, M.: Tunable phase control for subluminal to superluminal light propagation. Phys. Rev. A 70(2), 023813 (2004)
Stepanov, S., Sánchez, M.P.: Slow and fast light via two-wave mixing in erbium-doped fibers with saturable absorption. Phys. Rev. A 80(5), 053830 (2009)
Fredrik, H., Xiaoqing, Z., Albert, S., Tobias, J.K., Hans, H., Rudolf, G.: Electromechanically induced absorption in a circuit nano-electromechanical system. New J. Phys. 14(12), 123037 (2012)
Genes, C., Vitali, D., Tombesi, P.: Emergence of atom-light-mirror entanglement inside an optical cavity. Phys. Rev. A 77(5), 050307(R) (2008)
Zhang, J., Zhang, T., Xuereb, A., Vitali, D., Li, J.: More nonlocality with less entanglement in a tripartite atom-optomechanical system. Ann. Phys. 527(1–2), 147 (2015)
Spillane, S.M., Kippenberg, T.J., Painter, O.J., Vahala, K.J.: Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91(4), 043902 (2003)
Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940)
Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, New York (1997)
Sauer, J.A., Fortier, K.M., Chang, M.S., Hamley, C.D., Chapman, M.S.: Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804(R) (2004)
Brennecke, F., Donner, T., Ritter, S., Bourdel, T., Köhl, M., Esslinger, T.: Cavity QED with a Bose-Einstein condensate. Nature 450, 268 (2007)
Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2004)
Groblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460(7256), 724 (2009)
Tuchman, A.K., Long, R., Vrijsen, G., Boudet, J., Lee, J., Kasevich, M.A.: Normal-mode splitting with large collective cooperativity. Phys. Rev. A 74(5), 053821 (2006)
Steck, D.A.: Rubidium 87 D line data, available online at http://steck.us/alkalidata
Moon, H.S., Noh, H.R.: Polarization dependence of double-resonance optical pumping and electromagnetically induced transparency in the \(5{S}_{1/2}\)-\(5{P}_{3/2}\)-\(5{D}_{5/2}\) transition of \(^{87}{Rb}\) atoms. Phys. Rev. A 84, 033821 (2011)
Singh, V., Bosman, S.J., Schneider, B.H., Blanter, Y.M., Castellanos Gomez, A., Steele, G.A.: Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol. 9(10), 820 (2014)
Acknowledgements
We are grateful to Professor Zi-Dan Wang at the University of Hong Kong for his insightful discussions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11504258 and 11805140), the Natural Science Foundation of Shanxi Province (Grant Nos. 201801D221031, 201801D221021, and 201601D011015), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, B., Xing, HW., Chen, JB. et al. Tunable fast–slow light conversion based on optomechanically induced absorption in a hybrid atom–optomechanical system . Quantum Inf Process 20, 10 (2021). https://doi.org/10.1007/s11128-020-02955-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02955-4