Abstract
We study the effect of an ancillary system on the quantum speed limit time in different non-Markovian environments. Through employing an ancillary system coupled with the quantum system of interest via hopping interaction and investigating the cases that both the quantum system and ancillary system interact with their independent/common environment, and the case that only the system of interest interacts with the environment, we find that the quantum speed limit time will become shorter with enhancing the interaction between the system and environment and show periodic oscillation phenomena along with the hopping interaction between the quantum system and ancillary system increasing. The results indicate that the hopping interaction with the ancillary system and the structure of environment determine the degree of which the evolution of the quantum system can be accelerated.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 9, 249 (1945)
Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188 (1998)
Levitin, L.B., Toffoli, T.: Fundamental limit on the rate of quantum dynamics: the unified bound is tight. Phys. Rev. Lett. 103, 160502 (2009)
Fleming, G.N.: A unitarity bound on the evolution of nonstationary states. Nuovo Cimento. 16, 232 (1973)
Bhattacharyya, K.: Quantum decay and the Mandelstam-Tamm time-energy inequality. J. Phys. A 16, 2993 (1983)
Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990)
Pati, A.K.: Relation between phases and distance in quantum evolution. Phys. Lett. A 159, 105 (1991)
Vaidman, L.: Minimum time for the evolution to an orthogonal quantum state. Am. J. Phys. 60, 182 (1992)
Brody, D.C.: Elementary derivation for passage times. J. Phys. A: Math. Gen. 36, 5587 (2003)
Jones, P.J., Kok, P.: Geometric derivation of the quantum speed limit. Phys. Rev. A 82, 022107 (2010)
Campaioli, F., Pollock, F.A., Binder, F.C., Modi, K.: Tightening quantum speed limits for almost all states. Phys. Rev. Lett. 120, 060409 (2018)
Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)
Bekenstein, J.D.: Energy cost of information transfer. Phys. Rev. Lett. 46, 623 (1981)
Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Colloquium: non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)
Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)
del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limit in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)
Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)
Frey, M.R.: Quantum speed limits-primer, perspectives, and potential future directions. Quantum Inf. Process. 15, 3919 (2016)
Deffner, S., Campbell, S.: Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A: Math. Theor. 50, 453001 (2017)
Xu, Z.Y., Luo, S., Yang, W.L., Liu, C., Zhu, S.: Quantum speedup in a memory environment. Phys. Rev. A 89, 012307 (2014)
Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: Speedup of quantum evolution of multiqubit entanglement states. Sci. Rep. 4, 4890 (2014)
Wu, S.X., Zhang, Y., Yu, C.S., Song, H.S.: The initial-state dependence of the quantum speed limit. J. Phys. A: Math. Theor. 48, 045301 (2015)
Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: Classical-driving-assisted quantum speed-up. Phys. Rev. A 91, 032112 (2015)
Sun, Z., Liu, J., Ma, J., Wang, X.: Quantum speed limits in open systems: non-Markovian dynamics without rotating-wave approximation. Sci. Rep. 5, 8444 (2015)
Liu, H.B., Yang, W.L., An, J.H., Xu, Z.Y.: Mechanism for quantum speedup in open quantum systems. Phys. Rev. A 93, 020105 (2016)
Song, Y.J., Kuang, L.M., Tan, Q.S.: Quantum speedup of uncoupled multiqubit open system via dynamical decoupling pulses. Quantum Inf Process. 15, 2325 (2016)
Ektesabi, A., Behzadi, N., Faizi, E.: Improved bound for quantum-speed-limit time in open quantum systems by introducing an alternative fidelity. Phys. Rev. A 95, 022115 (2017)
Wu, S.X., Yu, C.S.: Quantum speed limit for a mixed initial state. Phys. Rev. A 98, 042132 (2018)
Awasthi, N., Haseli, S., Johri, U.C., Salimi, S., Dolatkhah, H., Khorashad, A.S.: Quantum speed limit time for correlated quantum channel. Quantum Infor. Process. 19, 10 (2020)
Wu, S.X., Yu, C.S.: Quantum speed limit based on the bound of Bures angle. Sci. Rep. 10, 5500 (2020)
Jing, J., Wu, L.A., del Campo, A.: Fundamental speed limits to the generation of quantumness. Sci. Rep. 6, 38149 (2016)
Pires, D.P., Cianciaruso, M., Céleri, L.C., Adesso, G., Soares-Pinto, D.O.: Generalized geometric quantum speed limits. Phys. Rev. X 6, 021031 (2016)
Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)
Deffner, S.: Quantum speed limits and the maximal rate of information production. Phys. Rev. Res. 2, 013161 (2019)
Campaioli, F., Yu, C. S., Pollock, F. A., Modi, K.: Resource speed limits: maximal rate of resource variation. arXiv: 2004.03078
Campbell, S., Deffner, S.: Trade-off between speed and cost in shortcuts to adiabaticity. Phys. Rev. Lett. 118, 100601 (2017)
Xu, Z.Y., You, W.L., Dong, Y.L., Zhang, C., Yang, W.L.: Generalized speed and cost rate in transitionless quantum driving. Phys. Rev. A 97, 032115 (2018)
Demirplak, M., Rice, S.A.: On the consistency, extremal, and global properties of counterdiabatic fields. J. Chem. Phys. 129, 154111 (2008)
Takahashi, K.: How fast and robust is the quantum adiabatic passage? J. Phys. A: Math. Theor. 46, 315304 (2013)
del Campo, A., Goold, J., Paternostro, M.: More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2014)
Funo, K., Zhang, J.N., Chatou, C., Kim, K., Ueda, M., del Campo, A.: Universal work fluctuations during shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 118, 100602 (2017)
Sun, S., Zheng, Y.: Distinct bound of the quantum speed limit via the gauge invariant distance. Phys. Rev. Lett. 123, 180403 (2019)
Fogarty, T., Deffner, S., Busch, T., Campbell, S.: Orthogonality catastrophe as a consequence of the quantum speed limit. Phys. Rev. Lett. 124, 110601 (2020)
Puebla, R., Deffner, S., Campbell, S.: Kibble-Zurek scaling in quantum speed limits for shortcuts to adiabaticity. Phys. Rev. Res. 2, 032020 (2020)
García-Pintos, L.P., del Campo, A.: Quantum speed limits under continuous quantum measurements. New J. Phys. 21, 033012 (2019)
Nicholson, S.B., Garcìa-Pintos, L.P., del Campo, A., Green, J.R.: Time-information uncertainty relations in thermodynamics. Nature Phys. 16, 1211 (2020)
Shanahan, B., Chenu, A., Margolus, N., del Campo, A.: Quantum speed limits across the quantum-to-classical transition. Phys. Rev. Lett. 120, 070401 (2018)
Okuyama, M., Ohzeki, M.: Quantum speed limit is not quantum. Phys. Rev. Lett. 120, 070402 (2018)
Deffner, S.: Geometric quantum speed limits: a case for Wigner phase space. New J. Phys. 19, 103018 (2017)
Shiraishi, N., Funo, K., Saito, K.: Speed limit for classical stochastic processes. Phys. Rev. Lett. 121, 070601 (2018)
Wu, S.X., Yu, C.S.: Margolus-Levitin speed limit across quantum to classical regimes based on trace distance. Chin. Phys. B 29, 050302 (2020)
Hu, X., Sun, S., Zheng, Y.: Quantum speed limit via the trajectory ensemble. Phys. Rev. A 101, 042107 (2020)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)
Wu, S.X., Zhang, Y., Yu, C.S.: Local quantum uncertainty guarantees the measurement precision for two coupled two-level systems in non-Markovian environment. Ann. Phys. 390, 71 (2018)
Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)
Wu, S.X., Zhang, J., Yu, C.S., Song, H.S.: Uncertainty-induced quantum nonlocality. Phys. Lett. A 378, 344 (2014)
Acknowledgements
This work was supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Grant No. 2019L0527. Yu was supported by the National Natural Science Foundation of China under Grant No. 11775040.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fan, J., Wu, S. & Yu, Cs. Quantum acceleration by an ancillary system in non-Markovian environments. Quantum Inf Process 20, 9 (2021). https://doi.org/10.1007/s11128-020-02964-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02964-3