Skip to main content

Advertisement

Log in

Quantum acceleration by an ancillary system in non-Markovian environments

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the effect of an ancillary system on the quantum speed limit time in different non-Markovian environments. Through employing an ancillary system coupled with the quantum system of interest via hopping interaction and investigating the cases that both the quantum system and ancillary system interact with their independent/common environment, and the case that only the system of interest interacts with the environment, we find that the quantum speed limit time will become shorter with enhancing the interaction between the system and environment and show periodic oscillation phenomena along with the hopping interaction between the quantum system and ancillary system increasing. The results indicate that the hopping interaction with the ancillary system and the structure of environment determine the degree of which the evolution of the quantum system can be accelerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 9, 249 (1945)

    MathSciNet  MATH  Google Scholar 

  2. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188 (1998)

    Article  Google Scholar 

  3. Levitin, L.B., Toffoli, T.: Fundamental limit on the rate of quantum dynamics: the unified bound is tight. Phys. Rev. Lett. 103, 160502 (2009)

    Article  ADS  Google Scholar 

  4. Fleming, G.N.: A unitarity bound on the evolution of nonstationary states. Nuovo Cimento. 16, 232 (1973)

    Article  ADS  Google Scholar 

  5. Bhattacharyya, K.: Quantum decay and the Mandelstam-Tamm time-energy inequality. J. Phys. A 16, 2993 (1983)

    Article  ADS  Google Scholar 

  6. Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Pati, A.K.: Relation between phases and distance in quantum evolution. Phys. Lett. A 159, 105 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  8. Vaidman, L.: Minimum time for the evolution to an orthogonal quantum state. Am. J. Phys. 60, 182 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Brody, D.C.: Elementary derivation for passage times. J. Phys. A: Math. Gen. 36, 5587 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Jones, P.J., Kok, P.: Geometric derivation of the quantum speed limit. Phys. Rev. A 82, 022107 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  11. Campaioli, F., Pollock, F.A., Binder, F.C., Modi, K.: Tightening quantum speed limits for almost all states. Phys. Rev. Lett. 120, 060409 (2018)

    Article  ADS  Google Scholar 

  12. Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)

    Article  ADS  Google Scholar 

  13. Bekenstein, J.D.: Energy cost of information transfer. Phys. Rev. Lett. 46, 623 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  14. Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Colloquium: non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  15. Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)

    Article  ADS  Google Scholar 

  16. del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limit in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)

    Article  Google Scholar 

  17. Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)

    Article  ADS  Google Scholar 

  18. Frey, M.R.: Quantum speed limits-primer, perspectives, and potential future directions. Quantum Inf. Process. 15, 3919 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Deffner, S., Campbell, S.: Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A: Math. Theor. 50, 453001 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Xu, Z.Y., Luo, S., Yang, W.L., Liu, C., Zhu, S.: Quantum speedup in a memory environment. Phys. Rev. A 89, 012307 (2014)

    Article  ADS  Google Scholar 

  21. Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: Speedup of quantum evolution of multiqubit entanglement states. Sci. Rep. 4, 4890 (2014)

    Article  Google Scholar 

  22. Wu, S.X., Zhang, Y., Yu, C.S., Song, H.S.: The initial-state dependence of the quantum speed limit. J. Phys. A: Math. Theor. 48, 045301 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: Classical-driving-assisted quantum speed-up. Phys. Rev. A 91, 032112 (2015)

    Article  ADS  Google Scholar 

  24. Sun, Z., Liu, J., Ma, J., Wang, X.: Quantum speed limits in open systems: non-Markovian dynamics without rotating-wave approximation. Sci. Rep. 5, 8444 (2015)

    Article  ADS  Google Scholar 

  25. Liu, H.B., Yang, W.L., An, J.H., Xu, Z.Y.: Mechanism for quantum speedup in open quantum systems. Phys. Rev. A 93, 020105 (2016)

    Article  ADS  Google Scholar 

  26. Song, Y.J., Kuang, L.M., Tan, Q.S.: Quantum speedup of uncoupled multiqubit open system via dynamical decoupling pulses. Quantum Inf Process. 15, 2325 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Ektesabi, A., Behzadi, N., Faizi, E.: Improved bound for quantum-speed-limit time in open quantum systems by introducing an alternative fidelity. Phys. Rev. A 95, 022115 (2017)

    Article  ADS  Google Scholar 

  28. Wu, S.X., Yu, C.S.: Quantum speed limit for a mixed initial state. Phys. Rev. A 98, 042132 (2018)

    Article  ADS  Google Scholar 

  29. Awasthi, N., Haseli, S., Johri, U.C., Salimi, S., Dolatkhah, H., Khorashad, A.S.: Quantum speed limit time for correlated quantum channel. Quantum Infor. Process. 19, 10 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  30. Wu, S.X., Yu, C.S.: Quantum speed limit based on the bound of Bures angle. Sci. Rep. 10, 5500 (2020)

    Article  ADS  Google Scholar 

  31. Jing, J., Wu, L.A., del Campo, A.: Fundamental speed limits to the generation of quantumness. Sci. Rep. 6, 38149 (2016)

  32. Pires, D.P., Cianciaruso, M., Céleri, L.C., Adesso, G., Soares-Pinto, D.O.: Generalized geometric quantum speed limits. Phys. Rev. X 6, 021031 (2016)

    Google Scholar 

  33. Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)

    Article  ADS  Google Scholar 

  34. Deffner, S.: Quantum speed limits and the maximal rate of information production. Phys. Rev. Res. 2, 013161 (2019)

    Article  Google Scholar 

  35. Campaioli, F., Yu, C. S., Pollock, F. A., Modi, K.: Resource speed limits: maximal rate of resource variation. arXiv: 2004.03078

  36. Campbell, S., Deffner, S.: Trade-off between speed and cost in shortcuts to adiabaticity. Phys. Rev. Lett. 118, 100601 (2017)

    Article  ADS  Google Scholar 

  37. Xu, Z.Y., You, W.L., Dong, Y.L., Zhang, C., Yang, W.L.: Generalized speed and cost rate in transitionless quantum driving. Phys. Rev. A 97, 032115 (2018)

    Article  ADS  Google Scholar 

  38. Demirplak, M., Rice, S.A.: On the consistency, extremal, and global properties of counterdiabatic fields. J. Chem. Phys. 129, 154111 (2008)

    Article  ADS  Google Scholar 

  39. Takahashi, K.: How fast and robust is the quantum adiabatic passage? J. Phys. A: Math. Theor. 46, 315304 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. del Campo, A., Goold, J., Paternostro, M.: More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2014)

    Article  ADS  Google Scholar 

  41. Funo, K., Zhang, J.N., Chatou, C., Kim, K., Ueda, M., del Campo, A.: Universal work fluctuations during shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 118, 100602 (2017)

    Article  ADS  Google Scholar 

  42. Sun, S., Zheng, Y.: Distinct bound of the quantum speed limit via the gauge invariant distance. Phys. Rev. Lett. 123, 180403 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  43. Fogarty, T., Deffner, S., Busch, T., Campbell, S.: Orthogonality catastrophe as a consequence of the quantum speed limit. Phys. Rev. Lett. 124, 110601 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  44. Puebla, R., Deffner, S., Campbell, S.: Kibble-Zurek scaling in quantum speed limits for shortcuts to adiabaticity. Phys. Rev. Res. 2, 032020 (2020)

    Article  Google Scholar 

  45. García-Pintos, L.P., del Campo, A.: Quantum speed limits under continuous quantum measurements. New J. Phys. 21, 033012 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  46. Nicholson, S.B., Garcìa-Pintos, L.P., del Campo, A., Green, J.R.: Time-information uncertainty relations in thermodynamics. Nature Phys. 16, 1211 (2020)

    Article  ADS  Google Scholar 

  47. Shanahan, B., Chenu, A., Margolus, N., del Campo, A.: Quantum speed limits across the quantum-to-classical transition. Phys. Rev. Lett. 120, 070401 (2018)

    Article  ADS  Google Scholar 

  48. Okuyama, M., Ohzeki, M.: Quantum speed limit is not quantum. Phys. Rev. Lett. 120, 070402 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  49. Deffner, S.: Geometric quantum speed limits: a case for Wigner phase space. New J. Phys. 19, 103018 (2017)

    Article  ADS  Google Scholar 

  50. Shiraishi, N., Funo, K., Saito, K.: Speed limit for classical stochastic processes. Phys. Rev. Lett. 121, 070601 (2018)

    Article  ADS  Google Scholar 

  51. Wu, S.X., Yu, C.S.: Margolus-Levitin speed limit across quantum to classical regimes based on trace distance. Chin. Phys. B 29, 050302 (2020)

    Article  ADS  Google Scholar 

  52. Hu, X., Sun, S., Zheng, Y.: Quantum speed limit via the trajectory ensemble. Phys. Rev. A 101, 042107 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  53. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  54. Wu, S.X., Zhang, Y., Yu, C.S.: Local quantum uncertainty guarantees the measurement precision for two coupled two-level systems in non-Markovian environment. Ann. Phys. 390, 71 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  56. Wu, S.X., Zhang, J., Yu, C.S., Song, H.S.: Uncertainty-induced quantum nonlocality. Phys. Lett. A 378, 344 (2014)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Grant No. 2019L0527. Yu was supported by the National Natural Science Foundation of China under Grant No. 11775040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxiong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Wu, S. & Yu, Cs. Quantum acceleration by an ancillary system in non-Markovian environments. Quantum Inf Process 20, 9 (2021). https://doi.org/10.1007/s11128-020-02964-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02964-3

Keywords

Navigation