Abstract
We investigate the dynamics of quantum discord in a system of three non-interacting qubits, initially entangled in a Greenberger–Horne–Zeilinger state, in the presence of mixed classical environments. Precisely, the joint impacts of a static noise (SN) and a random telegraphic noise (RTN) are probed, by combining them in two different ways: independent and bipartite system–environment coupling. For both cases, one marginal system is coupled with an environment (say \(E_1\)), and the remaining subsystems are coupled either locally or not with a second environment (\(E_2\)), and vice versa. We show that quantum discord is more fragile in independent environments than in bipartite ones no matter the Markovianity of the dynamical process, and may exhibit sudden death and revival phenomena. A static noise is more fatal to the survival of quantum discord than a RTN, and its shielding effects are more pronounced as the number of subsystems under its effects increases. The opposite is found for a RTN, where discord robustness is enhanced as the number of affected subsystems increases.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A (2005). https://doi.org/10.1103/physreva.72.042316
Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A (2007). https://doi.org/10.1103/physreva.75.042310
Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett (2008). https://doi.org/10.1103/physrevlett.100.050502
Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. (2008). https://doi.org/10.1103/physrevlett.101.200501
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)
Cui, J., Gu, M., Kwek, L.C., Santos, M.F., Fan, H., Vedral, V.: Quantum phases with differing computational power. Nat. Commun. (2012). https://doi.org/10.1038/ncomms1809
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935). https://doi.org/10.1103/physrev.47.777
Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81(25), 5672 (1998). https://doi.org/10.1103/physrevlett.81.5672
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett (2001). https://doi.org/10.1103/physrevlett.88.017901
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34(35), 6899 (2001). https://doi.org/10.1088/0305-4470/34/35/315
Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. (2003). https://doi.org/10.1103/physrevlett.90.050401
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84(4), 1655 (2012). https://doi.org/10.1103/revmodphys.84.1655
Datta, A., Shaji, A.: Quantum discord and quantum computing—an appraisal. Int. J. Quantum Inf. 9(07n08), 1787 (2011). https://doi.org/10.1142/s0219749911008416
Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. (2010). https://doi.org/10.1103/physrevlett.105.095702
Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B (2008). https://doi.org/10.1103/physrevb.78.224413
Roa, L., Retamal, J.C., Alid-Vaccarezza, M.: Dissonance is required for assisted optimal state discrimination. Phys. Rev. Lett. 107, 080401 (2011). https://doi.org/10.1103/PhysRevLett.107.080401
Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A (2012). https://doi.org/10.1103/physreva.85.022328
Cui, J., Fan, H.: Correlations in the Grover search. J. Phys. A: Math. Theor. 43(4), 045305 (2010). https://doi.org/10.1088/1751-8113/43/4/045305
Biham, E., Brassard, G., Kenigsberg, D., Mor, T.: Quantum computing without entanglement. Theoret. Comput. Sci. 320(1), 15 (2004). https://doi.org/10.1016/j.tcs.2004.03.041
Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. (2004). https://doi.org/10.1103/physrevlett.93.140404
Yu, T., Eberly, J.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264(2), 393 (2006). https://doi.org/10.1016/j.optcom.2006.01.061
Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323(5914), 598 (2009). https://doi.org/10.1126/science.1167343
Werlang, T., Souza, S., Fanchini, F.F., Boas, C.J.V.: Robustness of quantum discord to sudden death. Phys. Rev. A (2009). https://doi.org/10.1103/physreva.80.024103
Yeo, Y., An, J.H., Oh, C.H.: Non-Markovian effects on quantum-communication protocols. Phys. Rev. A. (2010). https://doi.org/10.1103/physreva.82.032340
Gu, M., Chrzanowski, H.M., Assad, S.M., Symul, T., Modi, K., Ralph, T.C., Vedral, V., Lam, P.K.: Observing the operational significance of discord consumption. Nat. Phys. 8(9), 671 (2012). https://doi.org/10.1038/nphys2376
Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003). https://doi.org/10.1103/revmodphys.75.715
Metwally, N., Eleuch, H., Obada, A.S.: Sudden death and rebirth of entanglement for different dimensional systems driven by a classical random external field. Laser Phys. Lett. 13(10), 105206 (2016). https://doi.org/10.1088/1612-2011/13/10/105206
Bellomo, B., Franco, R.L., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A (2008). https://doi.org/10.1103/physreva.78.060302
An, N.B., Kim, J., Kim, K.: Entanglement dynamics of three interacting two-level atoms within a common structured environment. Phys. Rev. A (2011). https://doi.org/10.1103/physreva.84.022329
Buscemi, F., Bordone, P., Bertoni, A.: Validity of the single-particle approach for electron transport in quantum wires assisted by surface acoustic waves. J. Phys. Condens. Matter 21(30), 305303 (2009). https://doi.org/10.1088/0953-8984/21/30/305303
Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.: Effects of classical environmental noise on entanglement and quantum discord dynamics. Int. J. Quantum Inf. 10(08), 1241005 (2012). https://doi.org/10.1142/s0219749912410055
Benedetti, C., Paris, M.G.A., Buscemi, F., Bordone, P.: Time-evolution of entanglement and quantum discord of bipartite systems subject to \(1/f^{\alpha }\) noise. In: 2013 22nd International Conference on Noise and Fluctuations (ICNF) IEEE (2013). https://doi.org/10.1109/icnf.2013.6578952
Leggio, B., Franco, R.L., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: Distributed correlations and information flows within a hybrid multipartite quantum-classical system. Phys. Rev. A (2015). https://doi.org/10.1103/physreva.92.032311
D’Arrigo, A., Benenti, G., Franco, R.L., Falci, G., Paladino, E.: Hidden entanglement, system-environment information flow and non-Markovianity. Int. J. Quantum Inf. 12(02), 1461005 (2014). https://doi.org/10.1142/s021974991461005x
Xu, J.S., Sun, K., Li, C.F., Xu, X.Y., Guo, G.C., Andersson, E., Franco, R.L., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. (2013). https://doi.org/10.1038/ncomms3851
Orieux, A., D’Arrigo, A., Ferranti, G., Franco, R.L., Benenti, G., Paladino, E., Falci, G., Sciarrino, F., Mataloni, P.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. (2015). https://doi.org/10.1038/srep08575
Arthur, T.T., Martin, T., Fai, L.C.: Disentanglement and quantum states transitions dynamics in spin-qutrit systems: dephasing random telegraph noise and the relevance of the initial state. Quantum Inf. Process. (2018). https://doi.org/10.1007/s11128-017-1800-y
Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A (2013). https://doi.org/10.1103/physreva.87.042310
Kim, K.I., Li, H.M., Zhao, B.K.: Genuine tripartite entanglement dynamics and transfer in a triple Jaynes-Cummings model. Int. J. Theor. Phys. 55(1), 241 (2015). https://doi.org/10.1007/s10773-015-2656-5
Espoukeh, P., Rahimi, R., Salimi, S., Pedram, P.: Dynamics of entanglement and non-classical correlation for four-qubit GHZ state. Int. J. Quantum Inf. 13(06), 1550044 (2015). https://doi.org/10.1142/s0219749915500446
Sadiek, G., Almalki, S.: Entanglement dynamics in Heisenberg spin chains coupled to a dissipative environment at finite temperature. Phys. Rev. A (2016). https://doi.org/10.1103/physreva.94.012341
Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise. Euro. Phys. J. Plus (2016). https://doi.org/10.1140/epjp/i2016-16380-3
Park, D.: Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment. Quantum Inf. Process. 15(8), 3189 (2016). https://doi.org/10.1007/s11128-016-1331-y
Kenfack, L.T., Tchoffo, M., Fai, L.C., Fouokeng, G.C.: Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise. Physica B 511, 123 (2017). https://doi.org/10.1016/j.physb.2017.02.011
Kenfack, L.T., Tchoffo, M., Fai, L.C.: Dynamics of tripartite quantum entanglement and discord under a classical dephasing random telegraph noise. Euro. Phys. J. Plus 132(2), 91 (2017). https://doi.org/10.1140/epjp/i2017-11364-5
Arthur, T.T., Martin, T., Fai, L.C.: Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise. Quantum Inf. Process (2018). https://doi.org/10.1007/s11128-018-1899-5
Tchoffo, M., Tsokeng, A.T., Tiokang, O.M., Nganyo, P.N., Fai, L.C.: Frozen entanglement and quantum correlations of one-parameter qubit-qutrit states under classical noise effects. Phys. Lett. A 383(16), 1856 (2019). https://doi.org/10.1016/j.physleta.2019.03.022
Kenfack, L.T., Tchoffo, M., Javed, M., Fai, L.C.: Dynamics and protection of quantum correlations in a qubit-qutrit system subjected locally to a classical random field and colored noise. Quantum Inf. Process (2020). https://doi.org/10.1007/s11128-020-2599-5
Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Non-Markovian effect on the quantum discord. Phys. Rev. A (2010). https://doi.org/10.1103/physreva.81.014101
Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A (2008). https://doi.org/10.1103/physreva.77.042303
Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubitXstates. Phys. Rev. A (2010). https://doi.org/10.1103/physreva.81.042105
Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A (2009). https://doi.org/10.1103/physreva.80.022108
Giorgi, G.L., Bellomo, B., Galve, F., Zambrini, R.: Genuine Quantum and Classical Correlations in Multipartite Systems. Phys. Rev. Lett. (2011). https://doi.org/10.1103/physrevlett.107.190501
Zhao, L., Hu, X., Yue, R.H., Fan, H.: Genuine correlations of tripartite system. Quantum Inf. Process. 12(7), 2371 (2013). https://doi.org/10.1007/s11128-013-0525-9
Beggi, A., Buscemi, F., Bordone, P.: Analytical expression of genuine tripartite quantum discord for symmetrical X-states. Quantum Inf. Process. 14(2), 573 (2014). https://doi.org/10.1007/s11128-014-0882-z
Falaye, B.J., Sun, G.H., Camacho-Nieto, O., Dong, S.H.: JRSP of three-particle state via three tripartite GHZ class in quantum noisy channels. Int. J. Quantum Inf. 14(07), 1650034 (2016). https://doi.org/10.1142/S0219749916500349
Qiang, W.C., Sun, G.H., Dong, Q., Camacho-Nieto, O., Dong, S.H.: Concurrence of three Jaynes-Cummings systems. Quantum Inf. Process. 17(4), 90 (2018). https://doi.org/10.1007/s11128-018-1851-8
Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A (2018). https://doi.org/10.1103/physreva.98.022320
Dong, Q., Manilla, A.A.S., Yáñez, I.L., Sun, G.H., Dong, S.H.: Tetrapartite entanglement measures of GHZ state with uniform acceleration. Phys. Scr. 94(10), 105101 (2019). https://doi.org/10.1088/1402-4896/ab2111
Dong, Q., Sanchez, M.A.M., Sun, G.H., Toutounji, M., Dong, S.H.: Tripartite entanglement measures of generalized GHZ state in uniform acceleration. Chin. Phys. Lett. 36(10), 100301 (2019). https://doi.org/10.1088/0256-307x/36/10/100301
Amir, A., Lahini, Y., Perets, H.B.: Classical diffusion of a quantum particle in a noisy environment. Phys. Rev. E (2009). https://doi.org/10.1103/physreve.79.050105
Thompson, C., Vemuri, G., Agarwal, G.S.: Anderson localization with second quantized fields in a coupled array of waveguides. Phys. Rev. A (2010). https://doi.org/10.1103/physreva.82.053805
Lahini, Y., Bromberg, Y., Christodoulides, D.N., Silberberg, Y.: Quantum correlations in two-particle anderson localization. Phys. Rev. Lett. (2010). https://doi.org/10.1103/physrevlett.105.163905
Oppenheim, A.V., Verghese, G.C.: Signals, Systems and Inference. Pearson, London (2015)
Bordone, P., Buscemi, F., Benedetti, C.: Effect of Markov and Non-markov classical noise on entanglement dynamics. Fluctuation Noise Lett. 11(03), 1242003 (2012). https://doi.org/10.1142/s0219477512420035
Faoro, L., Ioffe, L.B.: Microscopic origin of low-frequency flux noise in Josephson circuits. Phys. Rev. Lett. (2008). https://doi.org/10.1103/physrevlett.100.227005
Bergli, J., Galperin, Y.M., Altshuler, B.L.: Decoherence in qubits due to low-frequency noise. New J. Phys. 11(2), 025002 (2009). https://doi.org/10.1088/1367-2630/11/2/025002
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fabrice, K.F., Arthur, T.T., Pernel, N.N. et al. Tripartite quantum discord dynamics in qubits driven by the joint influence of distinct classical noises. Quantum Inf Process 20, 20 (2021). https://doi.org/10.1007/s11128-020-02967-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02967-0