Abstract
By use of the generalized variance for any operator (not necessarily Hermitian), we introduce the uncertainty of quantum channels as the sum of the generalized variances for the Kraus operators of quantum channels and prove that it satisfies several desirable properties. Then, we establish two trade-off relations between the uncertainty of quantum channels and the entanglement fidelity which is introduced by Schumacher (Phys. Rev. A 54: 2614, 1996) and quantifies how well the channel preserves the entanglement between the input system and the auxiliary system for purification. Finally, we illustrate the uncertainty of quantum channels through some typical examples.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613 (1997)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Cimini, V., Gianani, I., Sbroscia, M., Sperling, J., Barbieri, M.: Measuring coherence of quantum measurements. Phys. Rev. Research 1, 033020 (2019)
Theurer, T., Egloff, D., Zhang, L., Plenio, M.B.: Quantifying operations with an application to coherence. Phys. Rev. Lett. 122, 190405 (2019)
Li, L., Bu, K., Liu, Z.W.: Quantifying the resource content of quantum channels: An operational approach. Phys. Rev. A 101, 022335 (2020)
Liu, Y., Yuan, X.: Operational resource theory of quantum channels. Phys. Rev. Research 2, 012035 (2020)
Banaszek, K.: Fidelity balance in quantum operations. Phys. Rev. Lett. 86, 1366 (2001)
Luo, S., Fu, S., Li, N.: Decorrelating capabilities of operations with application to decoherence. Phys. Rev. A 82, 052122 (2010)
Galve, F., Plastina, F., Paris, M.G.A., Zambrini, R.: Discording power of quantum evolutions. Phys. Rev. Lett. 110, 010501 (2013)
Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)
Bu, K., Kumar, A., Zhang, L., Wu, J.: Cohering power of quantum operations. Phys. Lett. A 381, 1670 (2017)
Zanardi, P., Styliaris, G., Venuti, L.C.: Coherence-generating power of quantum unitary maps and beyond. Phys. Rev. A 95, 052306 (2017)
Zhang, L., Ma, Z., Chen, Z., Fei, S.-M.: Coherence generating power of unitary transformations via probabilistic average. Quantum Inf. Process. 17, 186 (2018)
Styliaris, G., Venuti, L.C., Zanardi, P.: Coherence-generating power of quantum dephasing processes. Phys. Rev. A 97, 032304 (2018)
Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)
Schlosshauer, M.A.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2005)
Luo, S.: Heisenberg uncertainty relation for mixed states. Phys. Rev. A 72, 042110 (2005)
Luo, S.: Quantum versus classical uncertainty. Theor. Math. Phys. 143, 681 (2005)
Luo, S.: Quantum uncertainty of mixed states based on skew information. Phys. Rev. A 73, 022324 (2006)
Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. A: Hadrons Nucl. 43, 172 (1927)
Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)
Schrödinger, E.: About Heisenberg uncertainty relation. Proc. Russ. Acad. Sci. Phys. Math. Sect. 19, 296 (1930)
Gudder, S.: Operator probability theory. Int. J. Pure Appl. Math. 39, 511 (2007)
Dou, Y.N., Du, H.K.: Generalizations of the Heisenberg and Schrodinger uncertainty relations. J. Math. Phys. 54, 103508 (2013)
Dou, Y.N., Du, H.K.: Note on the Wigner-Yanase-Dyson skew information. Int. J. Theor. Phys. 53, 952 (2014)
Li, N., Luo, S., Sun, Y.: Information-theoretic aspects of Werner states. Ann. Phys. 424, 168371, (2021)
Chen, B., Fei, S.M.: Total variance and invariant information in complementary measurements. Commun. Theor. Phys. 72, 065106 (2020)
Maccone, L.: Entropic information-disturbance tradeoff. Europhys. Lett. 77, 40002 (2007)
Luo, S.: Information conservation ang entropy change in quantum measurements. Phys. Rev. A 82, 052103 (2010)
Luo, S., Li, N.: Decoherence and measurement-induced correlations. Phys. Rev. A 84, 052309 (2011)
Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak Measurement. Phys. Rev. Lett. 109, 150402 (2012)
Zhu, X., Zhang, Y., Liu, Q., Wu, S.: Information gain versus coupling strength in quantum measurements. Phys. Rev. A 85, 042330 (2012)
Shitara, T., Kuramochi, Y., Ueda, M.: Trade-off relation between information and disturbance in quantum measurement. Phys. Rev. A 93, 032134 (2016)
Fan, L., Ge, W., Nha, H., Zubairy, M.S.: Trade-off between information gain and fidelity under weak measurements. Phys. Rev. A 92, 022114 (2015)
Xi, Z.: Information gain and information leak in quantum measurements. Phys. Rev. A 93, 052308 (2016)
Buscemi, F., Sacch, M.F.: Information-disturbance trade-off in quantum-state discrimination. Phys. Rev. A 74, 052320 (2006)
Seveso, L., Paris, M.G.A.: Trade-off between information and disturbance in qubit thermometry. Phys. Rev. A 97, 032129 (2018)
Terashim, H.: Derivative of the disturbance with respect to information from quantum measurements. Quantum Inf. Process 18, 63 (2019)
Kull, I., Guérin, P.A., Verstraete, F.: Uncertainty and trade-offs in quantum multiparameter estimation. J. Phys. A: Math. Theor. 53, 244001 (2020)
Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614 (1996)
Barnum, H., Nielsen, M.A., Schumacher, B.: Information transmission through a noisy quantum channel. Phys. Rev. A 57, 6 (1998)
Schumacher, B., Nielsen, M.A.: Quantum data processing and error correction. Phys. Rev. A 54, 2629 (1996)
Juan, F.H., Gang, L.J., Bin, S.: Connections of coherent information, quantum discord, and entanglement. Commun. Theor. Phys. 57, 589 (2012)
Xiang, Y., Xiong, S.J.: Entanglement fidelity and measurement of entanglement presevation in quantum processes. Phys. Rev. A 76, 014301 (2007)
Xiang, Y., Xiong, S.J.: Entropy exchange, coherent information, and concurrence. Phys. Rev. A 76, 014306 (2007)
Sharma, G., Sazim, S., Pati, A.K.: Quantum coherence, coherent information and information gain in quantum measurement. Europhys. Lett. 127, 50004 (2019)
Luo, S., Zhang, Q.: On skew information. IEEE Trans. Inf. Theory 50, 1778 (2004)
Wigner, E.P., Yanase, M.M.: Information content of distribution. Proc. Natl. Acad. Sci. U.S.A. 49, 910 (1963)
Fan, Y., Cao, H., Wang, W., Meng, H., Chen, L.: Uncertainty relations with the generalized Wigner-Yanase-Dyson skew information. Quantum Inf. Process. 17, 157 (2018)
Luo, S., Sun, Y.: Coherence and complementary in state-channel interaction. Phys. Rev. A 98, 012113 (2018)
Buscemi, F., Chiribella, G., D’Ariano, G.M.: Inverting quantum decoherence by classical feedback from the environment. Phys. Rev. Lett. 95, 090501 (2005)
Brádler, K., Hayden, P., Touchette, D., Wilde, M.M.: Trade-off capacities of the quantum Hadamard channels. Phys. Rev. A 81, 062312 (2010)
Maziero, J.: Hilbert-Schmidt quantum coherence in multiqudit systems. Quantum Inf. Process. 16, 274 (2017)
Korzekwa, K., Lostaglio, M., Jennings, D., Rudolph, T.: Quantum and classical entropic uncertainty relations. Phys. Rev. A 89, 042122 (2014)
Acknowledgements
This work was supported by the Young Scientists Fund of the National Natural Science Foundation of China, Grant No. 12005104, the Youth Innovation Promotion Association of CAS, Grant No. 2020002, the National Natural Science Foundation of China, Grant Nos. 11775298 and 61833010, the National Center for Mathematics and Interdisciplinary Sciences, CAS, Grant No. Y029152K51, the Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences, Grant No. 2008DP173182.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sun, Y., Li, N. The uncertainty of quantum channels in terms of variance. Quantum Inf Process 20, 25 (2021). https://doi.org/10.1007/s11128-020-02972-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02972-3