Abstract
It is well known that obtaining information of the quantum system can be performed by quantum measurements. However, it also brings disturbance to the system and affects the entanglement between arbitrary bipartite systems. Firstly, based on the introduction of the purification system, the measurement process has been modeled as the tripartite systems. Then, the definitions of various information quantities are provided. Finally, we discuss the relationships between information gain and entanglement in the tripartite systems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kraus, K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983)
Nielsen, M.A., Caves, C.M.: Reversible quantum operations and their application to teleportation. Phys. Rev. A 55, 2547 (1996)
Fuchs, C.A., Jacobs, K.: Information tradeoff relations for finite-strength quantum measurements. Phys. Rev. A 63, 062305 (2001)
Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002)
Jacobs, K.: Efficient measurements, purification, and bounds on the mutual information. Phys. Rev. A 68, 054302 (2003)
Roga, W., Fannes, M., Zyczkowski, K.: Universal bounds for the Holevo quantity, coherent information, and the Jensen–Shannon divergence. Phys. Rev. Lett. 105, 040505 (2010)
Luo, S.L.: Information conservation and entropy change in quantum measurements. Phys. Rev. A 82, 052103 (2010)
Duan, Z.B., Hou, J.C.: Entropy change in quantum measurements for infinite-dimensional quantum systems. Int. J. Theor. Phys. 58, 463 (2019)
Groenewold, H.J.: A problem of information gain by quantal measurements. Int. J. Theor. Phys. 4, 327 (1971)
Ozawa, M.: On information gain by quantum measurements of continuous observables. J. Math. Phys. 27, 759 (1986)
Fuchs, C.A.: Information gain vs. state disturbance in quantum theory. Fortschr. Phys. 46, 4 (1996)
Schumacher, B., Nielsen, M.A.: Quantum data processing and error correction. Phys. Rev. A 54, 2629 (1996)
Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614 (1996)
Adami, C., Cerf, N.J.: On the von Neumann capacity of noisy quantum channels. Phys. Rev. A 56, 3470 (1996)
Maccone, L.: Entropic information-disturbance tradeoff. Europhys. Lett. 77, 40002 (2007)
Buscemi, F., Hayashi, M., Horodecki, M.: Global information balance in quantum measurements. Phys. Rev. Lett. 100, 210504 (2008)
Fuchs, C.A., Peres, A.: Quantum-state disturbance versus information gain: uncertainty relations for quantum information. Phys. Rev. A 53, 2038 (1996)
Ban, M.: State reduction, information and entropy in quantum measurement processes. Phys. A Gen. Phys. 32, 1643 (1999)
Sacchi, M.F.: Information-disturbance tradeoff in estimating a maximally entangled state. Phys. Rev. Lett. 96, 220502 (2006)
Shirokov, M.E.: Entropy reduction of quantum measurements. J. Math. Phys. 52, 052202 (2010)
Heinosaari, T., Miyadera, T.: Qualitative noise-disturbance relation for quantum measurements. Phys. Rev. A 88, 042117 (2013)
Buscemi, M.F., Hall, J.W., Ozawa, M., et al.: Noise and disturbance in quantum measurements: an information-theoretic approach. Phys. Rev. Lett. 112, 050401 (2014)
Xi, Z.J.: Information gain and information leak in quantum measurements. Phys. Rev. A 93, 052308 (2016)
Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)
Koashi, M., Winter, A.: Monogamy of entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)
Sun, Q.Q., Al-Amri, D.M., Davidovich, L., et al.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)
Luo, S.L., Li, N.: Decoherence and measurement-induced correlations. Phys. Rev. A 84, 052309 (2011)
Piani, M., Adesso, G.: Quantumness versus entanglement in quantum measurements. Phys. Rev. A 85, 040301 (2011)
Hu, M.L., Fan, H.: Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A 87, 022314 (2013)
Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)
Hu, M.L., Hu, X.Y., Wang, J.C., et al.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1–100 (2018)
Fujikawa, K., Oh, C.H., Umetsu, K.: A classical limit of Grover’s algorithm induced by dephasing: coherence versus entanglement. Mod. Phys. Lett. A 34, 1950146 (2019)
Gordon, J.P.: Noise at optical frequencies; information theory quantumn electronics and coherent light. In: Miles, P.A. (ed.), Proceedings of the International School of Physics, Academic Press, New York, pp. 156–181 (1964)
Holevo, A.S.: Statistical problems in quantum physics. In: Maruyama, G., Prokhorov, J.N. (eds.) Proceedings of the Second Japan-USSR Symposium on Probability Theory, Lecture Notes in Mathematics, Springer, Berlin, pp. 104–119 (1973)
Lindblad, G.: Quantum entropy and quantum measurements. In: Bendjiaballh, C., Hirota, O., Reynaud, S.(eds.) Lecture Notes in Physics, Springer, Berlin, pp. 19–80 (1991)
Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613 (1996)
Roga, W.: Entropy of quantum channel in the theory of quantum information. arXiv: quant-ph/1108.5065 (2011)
Plenio, M.B., Vedral, V.: Bounds on relative entropy of entanglement for multi-party systems. Phys. A Gen. Phys. 34, 6997 (2001)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant No. 11671284), Sichuan Science and Technology Program (Grant No. 2020YFG0290).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, Wj., Tang, L., Zhang, Q. et al. Information gain and systems entanglement in tripartite measurement model. Quantum Inf Process 20, 38 (2021). https://doi.org/10.1007/s11128-020-02979-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02979-w