Abstract
Optimization of the control operations is of critical importance in the context of quantum information processing. We adopt optimal control techniques to implement invariant-based quantum population transfer in a superconducting qutrit. The first three levels of a charge-phase quantum circuit constitute an effective qutrit. By applying two microwave drivings, a \(\Lambda \)-configuration interaction appears in the qutrit. The population transfers can be performed using the invariant-based shortcuts. Particularly, taking the methods of optimal control in resonant and non-resonant cases, we implement the accelerated transfer operation in which the noise effects can be reduced greatly, and realize the high transfer insensitivity to deviation error of Rabi coupling, respectively. Our strategy could offer a promising approach to investigate robust state transfer with superconducting artificial atoms experimentally.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998)
Mei, F., Feng, M., Yu, Y.-F., Zhang, Z.-M.: Scalable quantum information processing with atomic ensembles and flying photons. Phys. Rev. A 80, 042319 (2009)
Kurz, C., Schug, M., Eich, P., Huwer, J., Müller, P., Eschner, J.: Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer. Nat. Commun. 5, 5527 (2014)
Di Stefano, P.G., Paladino, E., D’Arrigo, A., Falci, G.: Population transfer in a Lambda system induced by detunings. Phys. Rev. B 91, 224506 (2015)
Beaudoin, F., Blais, A., Coish, W.A.: Hamiltonian engineering for robust quantum state transfer and qubit readout in cavity QED. New J. Phys. 19, 023041 (2017)
Kurpiers, P., et al.: Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 264 (2018)
Feng, Z.-B., Cai, Z.-L., Zhang, C., Fan, L., Feng, T.: Quantum information transfer with Cooper-pair box qubits in circuit QED. Opt. Commun. 283, 1975 (2010)
Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012)
Feng, Z.-B.: Robust quantum state transfer between a Cooper-pair box and diamond nitrogen-vacancy centers. Phys. Rev. A 91, 032307 (2015)
Wendin, G.: Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017)
Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.-X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1 (2017)
Liu, W.-Y., Zheng, D.-N., Zhao, S.-P.: Superconducting quantum bits. Chin. Phys. B 27, 027401 (2018)
Falci, G., Cognata, A.L., Berritta, M., D’Arrigo, A., Paladino, E., Spagnolo, B.: Design of a Lambda system for population transfer in superconducting nanocircuits. Phys. Rev. B 87, 214515 (2013)
Feng, Z.-B.: Quantum state transfer between hybrid qubits in a circuit QED. Phys. Rev. A 85, 014302 (2012)
Xu, P., Yang, X.-C., Mei, F., Xue, Z.-Y.: Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED. Sci. Rep. 6, 18695 (2016)
Li, X., et al.: Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. Phys. Rev. Appl. 10, 054009 (2018)
Feng, Z.-B., Yan, R.-Y., Zhou, Y.-Q.: Quantum state transfer with a two-dimensional Cooper-pair box qubit array. Quantum Inf. Process. 40, 1429 (2013)
Liu, T., Xiong, S.-J., Cao, X.-Z., Su, Q.-P., Yang, C.-P.: Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics. Opt. Lett. 40, 5602 (2015)
Kumar, K.S., Vepsäläinen, A., Danilin, S., Paraoanu, G.S.: Stimulated Raman adiabatic passage in a three-level superconducting circuit. Nat. Commun. 7, 10628 (2016)
Xu, H.K., et al.: Coherent population transfer between uncoupled or weakly coupled states in ladder-type superconducting qutrits. Nat. Commun. 7, 11018 (2016)
Chirolli, L., Burkard, G.: Decoherence in solid state qubits. Adv. Phys. 57, 225 (2008)
Paladino, E., Galperin, Y.M., Falci, G., Altshuler, B.L.: 1/f noise: implications for solid-state quantum information. Rev. Mod. Phys. 86, 361 (2014)
Solinas, P., Pirkkalainen, J.-M., Möttönen, M.: Ground-state geometric quantum computing in superconducting systems. Phys. Rev. A 82, 052304 (2010)
Dong, D., Chen, C., Qi, B., Petersen, I.R., Nori, F.: Robust manipulation of superconducting qubits in the presence of fluctuations. Sci. Rep. 5, 7873 (2015)
Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)
Torrontegui, E., et al.: Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117 (2013)
Wu, J.-L., Ji, X., Zhang, S.: Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states. Sci. Rep. 7, 46255 (2017)
Wu, J.L., Su, S.L.: Universal speeded-up adiabatic geometric quantum computation in three-level systems via counterdiabatic driving. J. Phys. A Math. Theor. 52, 335301 (2019)
Vepsäläinen, A., Danilin, S., Paraoanu, G.S.: Optimal superadiabatic population transfer and gates by dynamical phase corrections. Quantum Sci. Technol. 3, 024006 (2018)
Wang, T., et al.: The experimental realization of high-fidelity ‘shortcut-to-adiabaticity’ quantum gates in a superconducting Xmon qubit. New J. Phys. 20, 065003 (2018)
Feng, Z.-B., Lu, X.-J., Yan, R.-Y., Zhao, Z.-Y.: Fast and robust population transfer with a Josephson qutrit via shortcut to adiabaticity. Sci. Rep. 8, 9310 (2018)
Ma, L.-H., Kang, Y.-H., Shi, Z.-C., Huang, B.-H., Song, J., Xia, Y.: Shortcuts to adiabatic for implementing controlled phase gate with Cooper-pair box qubits in circuit quantum electrodynamics system. Quantum Inf. Process. 18, 65 (2019)
Yan, T., et al.: Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates. Phys. Rev. Lett. 122, 080501 (2019)
Vepsäläinen, A., Danilin, S., Paraoanu, G.S.: Superadiabatic population transfer in a three-level superconducting circuit. Sci. Adv. 5, eaau5999 (2019)
Peirce, A.P., Dahleh, M.A., Rabitz, H.: Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys. Rev. A 37, 4950 (1988)
Roloff, R., Wenin, M., Pötz, W.: Optimal control for open quantum systems: qubits and quantum gates. J. Comput. Theor. Nanosci. 6, 1837 (2009)
Spörl, A., Schulte-Herbrüggen, T., Glaser, S.J., Bergholm, V., Storcz, M.J., Ferber, J., Wilhelm, F.K.: Optimal control of coupled Josephson qubits. Phys. Rev. A 75, 012302 (2007)
Lucero, E., et al.: Reduced phase error through optimized control of a superconducting qubit. Phys. Rev. A 82, 042339 (2010)
Chen, Z., et al.: Measuring and suppressing quantum state leakage in a superconducting qubit. Phys. Rev. Lett. 116, 020501 (2016)
Bao, S., Kleer, S., Wang, R., Rahmani, A.: Optimal control of superconducting gmon qubits using Pontryagin’s minimum principle: preparing a maximally entangled state with singular bang–bang protocols. Phys. Rev. A 97, 062343 (2018)
Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886 (2002)
Feng, Z.-B., Lu, X.-J., Li, M., Yan, R.-Y., Zhou, Y.-Q.: Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving. New J. Phys. 19, 123023 (2017)
Lu, X.-J., Li, M., Zhao, Z.Y., Zhang, C.-L., Han, H.-P., Feng, Z.-B., Zhou, Y.-Q.: Nonleaky and accelerated population transfer in a transmon qutrit. Phys. Rev. A 96, 023843 (2017)
Feng, Z.-B., Li, M.: High-fidelity population transfer in a Josephson three-level atom with optimized level anharmonicity. Opt. Commun. 319, 56 (2014)
Hioe, F.T.: Gell-Mann dynamic symmetry for N-level quantum systems. Phys. Rev. A 32, 2824 (1985)
Lewis, H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)
Lewis, H.R., Leach, P.G.: A direct approach to finding exact invariants for one-dimensional time-dependent classical Hamiltonians. J. Math. Phys. 23, 2371 (1982)
Dhara, A.K., Lawande, S.W.: Feynman propagator for time-dependent Lagrangians possessing an invariant quadratic in momentum. J. Phys. A Math. Gen. 17, 2324 (1984)
Bruns, A., Genov, G.T., Hain, M., Vitanov, N.V., Halfmann, T.: Experimental demonstration of composite stimulated Raman adiabatic passage. Phys. Rev. A 98, 053413 (2018)
Yan, R.-Y., Yang, F., Zhang, N., Feng, Z.-B.: Accelerated and robust population transfer in a transmon qutrit via Delta-type driving. Quantum Inf. Process. 17, 237 (2018)
Yan, R.-Y., Feng, Z.-B., Zhang, C.-L., Li, M., Lu, X.-J., Zhou, Y.-Q.: Fast generations of entangled states between a transmon qubit and microwave photons via shortcuts to adiabaticity. Laser Phys. Lett. 15, 115205 (2018)
Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)
Lu, X.-J., Chen, X., Ruschhaupt, A., Alonso, D., Guérin, S., Muga, J.G.: Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors. Phys. Rev. A 88, 033406 (2013)
Daems, D., Ruschhaupt, A., Sugny, D., Guérin, S.: Robust quantum control by a single-shot shaped pulse. Phys. Rev. Lett. 111, 050404 (2013)
Acknowledgements
The authors thank Professor X. Chen for valuable discussions. This work is supported by the Key Research Project in Universities of Henan Province (Grant Nos. 19A140016, 20B140016) and the “316” Project Plan of Xuchang University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Feng, ZB., Lu, XJ. Optimal controls of invariant-based population transfer in a superconducting qutrit. Quantum Inf Process 19, 83 (2020). https://doi.org/10.1007/s11128-020-2583-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-2583-0