Skip to main content
Log in

Quantum teleportation with mutually unbiased bases

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

During the realization of one-qubit quantum teleportation, an EPR pair shared between two parties is required, followed by a joint Bell state measurement on the teleported qubit and the sender’s qubit. In this paper, we analyze the joint measurements in the case of teleporting multiple qubits. By carefully dividing the sender’s qubit space into several subspaces, we show that the receiver can restore the qubits if the measurement is taken in the mutually unbiased basis. We generalize our protocol to teleporting special entangled states and high-dimensional state. Our protocol may have potential application in multi-qubit quantum teleportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67(6), 661 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002). https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  MATH  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997). https://doi.org/10.1038/37539

    Article  ADS  MATH  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80(4), 869 (1998). https://doi.org/10.1103/PhysRevLett.80.869

    Article  ADS  Google Scholar 

  7. Yonezawa, H., Aoki, T., Furusawa, A.: Demonstration of a quantum teleportation network for continuous variables. Nature 431(7007), 430 (2004). https://doi.org/10.1038/nature02858

    Article  ADS  Google Scholar 

  8. Dell’ Anno, F., De Siena, S., Albano, L., Illuminati, F.: Continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 76(2), 022301 (2007). https://doi.org/10.1103/PhysRevA.76.022301

    Article  ADS  Google Scholar 

  9. Riebe, M., Häffner, H., Roos, C., Hänsel, W., Benhelm, J., Lancaster, G., Körber, T., Becher, C., Schmidt-Kaler, F., James, D., et al.: Deterministic quantum teleportation with atoms. Nature 429(6993), 734 (2004). https://doi.org/10.1038/nature02570

    Article  ADS  Google Scholar 

  10. Barrett, M., Chiaverini, J., Schaetz, T., Britton, J., Itano, W., Jost, J., Knill, E., Langer, C., Leibfried, D., Ozeri, R., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429(6993), 737 (2004). https://doi.org/10.1038/nature02608

    Article  ADS  Google Scholar 

  11. Krauter, H., Salart, D., Muschik, C., Petersen, J.M., Shen, H., Fernholz, T., Polzik, E.S.: Deterministic quantum teleportation between distant atomic objects. Nat. Phys. 9(7), 400 (2013). https://doi.org/10.1038/nphys2631

    Article  Google Scholar 

  12. Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a W state. N. J. Phys. 5(1), 136 (2003). https://doi.org/10.1088/1367-2630/5/1/136

    Article  Google Scholar 

  13. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62(2), 022307 (2000). https://doi.org/10.1103/PhysRevA.62.022307

    Article  ADS  MathSciNet  Google Scholar 

  14. Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48(2), 516 (2009). https://doi.org/10.1007/s10773-008-9827-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin-Ming, L., Guang-Can, G.: Quantum teleportation of a three-particle entangled state. Chin. Phys. Lett. 19(4), 456 (2002). https://doi.org/10.1088/0256-307X/19/4/303

    Article  ADS  Google Scholar 

  16. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006). https://doi.org/10.1103/PhysRevA.74.062320

    Article  ADS  Google Scholar 

  17. Van Houwelingen, J., Brunner, N., Beveratos, A., Zbinden, H., Gisin, N.: Quantum teleportation with a three-Bell-state analyzer. Phys. Rev. Lett. 96(13), 130502 (2006). https://doi.org/10.1103/PhysRevLett.96.130502

    Article  MathSciNet  Google Scholar 

  18. Nie, Yy, Li, Yh, Liu, Jcq, Sang, Mh: Perfect teleportation of an arbitrary three-qubit state by using W-class states. Int. J. Theor. Phys. 50(10), 3225 (2011). https://doi.org/10.1007/s10773-011-0825-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Yuan, W.: Quantum teleportation of an arbitrary three-qubit state using GHZ-like states. Int. J. Theor. Phys. 54(3), 851 (2015). https://doi.org/10.1007/s10773-014-2279-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Fang, J., Lin, Y., Zhu, S., Chen, X.: Probabilistic teleportation of a three-particle state via three pairs of entangled particles. Phys. Rev. A 67, 014305 (2003). https://doi.org/10.1103/PhysRevA.67.014305

    Article  ADS  Google Scholar 

  21. Zhang, Z., Liu, Y., Wang, D.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372(1), 28 (2007). https://doi.org/10.1016/j.physleta.2007.07.017

    Article  ADS  MATH  Google Scholar 

  22. Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A: Math. Gen. 34(35), 7081 (2001). https://doi.org/10.1088/0305-4470/34/35/332

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Durt, T., Englert, B.G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8(04), 535 (2010). https://doi.org/10.1142/S0219749910006502

    Article  MATH  Google Scholar 

  24. Brierley, S., Weigert, S., Bengtsson, I.: All mutually unbiased bases in dimensions two to five arXiv preprint arXiv:0907.4097 (2009)

  25. Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. USA 46(4), 570 (1960). https://doi.org/10.1073/pnas.46.4.570

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560(12), 7 (2014). https://doi.org/10.1016/j.tcs.2011.08.039

    Article  MathSciNet  MATH  Google Scholar 

  27. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54(3), 1862 (1996). https://doi.org/10.1103/PhysRevA.54.1862

    Article  ADS  MathSciNet  Google Scholar 

  28. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405 (1997). https://doi.org/10.1103/PhysRevLett.78.405

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191(2), 363 (1989). https://doi.org/10.1016/0003-4916(89)90322-9

    Article  ADS  MathSciNet  Google Scholar 

  30. Ivonovic, I.: Geometrical description of quantal state determination. J. Phys. A Math. Gen. 14(12), 3241 (1981). https://doi.org/10.1088/0305-4470/14/12/019

    Article  ADS  MathSciNet  Google Scholar 

  31. Jaming, P., Matolcsi, M., Móra, P., Szöllősi, F., Weiner, M.: A generalized Pauli problem and an infinite family of MUB-triplets in dimension 6. J. Phys. A Math. Theor. 42(24), 245305 (2009). https://doi.org/10.1088/1751-8113/42/24/245305

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Grassl, M.: arXiv preprint arXiv:quant-ph/0406175 (2004)

  33. Bengtsson, I., Bruzda, W., Ericsson, Å., Larsson, J.Å., Tadej, W., Życzkowski, K.: Mutually unbiased bases and Hadamard matrices of order six. J. Math. Phys. 48(5), 052106 (2007). https://doi.org/10.1063/1.2716990

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Klappenecker, A., Rötteler, M.: In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Finite Fields and Applications, pp. 137–144. Springer, Berlin Heidelberg, (2004)

  35. Roa, L., Delgado, A., Fuentes-Guridi, I.: Optimal conclusive teleportation of quantum states. Phys. Rev. A 68, 022310 (2003). https://doi.org/10.1103/PhysRevA.68.022310

    Article  ADS  Google Scholar 

  36. Mirhosseini, M., Magaña-Loaiza, O.S., O’Sullivan, M.N., Rodenburg, B., Malik, M., Lavery, M.P.J., Padgett, M.J., Gauthier, D.J., Boyd, R.W.: High-dimensional quantum cryptography with twisted light. N. J. Phys. 17(3), 033033 (2015). https://doi.org/10.1088/1367-2630/17/3/033033

    Article  MathSciNet  Google Scholar 

  37. Bouchard, F., Heshami, K., England, D., Fickler, R., Boyd, R.W., Englert, B.G., Sánchez-Soto, L.L., Karimi, E.: Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons. Quantum 2, 111 (2018). https://doi.org/10.22331/q-2018-12-04-111

    Article  Google Scholar 

  38. Wang, F., Wang, Y., Liu, R., Chen, D., Zhang, P., Gao, H., Li, F.: Demonstration of quantum permutation algorithm with a single photon ququart. Sci. Rep. 5, 10995 (2015). https://doi.org/10.1038/srep10995

    Article  ADS  Google Scholar 

  39. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518(7540), 516 (2015). https://doi.org/10.1038/nature14246

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Science, Technology and Innovation Commission of Shenzhen Municipality (Nos. ZDSYS20170303165926217, JCYJ20170412152620376) and Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06D348).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Zhang, L. & Zhang, J. Quantum teleportation with mutually unbiased bases. Quantum Inf Process 19, 121 (2020). https://doi.org/10.1007/s11128-020-2621-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2621-y

Keywords

Navigation