Abstract
The properties of the ferimonic entangled states resulting from the projective measurements in the Gauss–Bonnet spacetime are studied. It is found that the degree of entanglement, for projection onto double particles state, increases monotonously as the Hawking temperature T increases but decreases monotonously as the frequency of the detected particles increases; and for projection onto single particle state, the particle states are entangled for spin picture but are separable states for occupation number picture as \(T\rightarrow 0\), while the particle states for the both pictures are entangled as \(T\rightarrow \infty \). It is also shown that the Gauss–Bonnet coefficient \(\alpha \) and dimension d of the spacetime will affect the entanglement greatly.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)
Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)
Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)
Martín-Martínez, E., León, J.: Quantum correlations through event horizons: fermionic versus bosonic entanglement. Phys. Rev. A 81, 032320 (2010)
Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertia frames. Phys. Rev. A 74, 032326 (2006)
Pan, Q., Jing, J.: Hawking radiation, enatanglement and teleportation in background of an asymptotically flat static black hole. Phys. Rev. D 78, 065015 (2008)
León, J., Martín-Martínez, E.: Spin and occupation number entanglement of Dirac fields for noninertial observers. Phys. Rev. A 80, 012314 (2009)
Pan, Q., Jing, J.: Degradation of non-maximal entanglement of scalar and Dirac fields in non-inertial frames. Phys. Rev. A 77, 024302 (2008)
Ge, X.-H., Kim, S.P.: Quantum entanglement and teleportation in higher dimensional black hole spacetimes. Class. Quantum Grav 25, 075011 (2008)
Adesso, G., Fuentes-Schuller, I., Ericsson, M.: Continuous-variable entanglement sharing in noninertial frames. Phys. Rev. A 76, 062112 (2007)
Huang, Z., Tian, Z.: Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime. Nucl. Phys. B 923, 458 (2017)
Huang, Z.: Quantum entanglement of nontrivial spacetime topology. Eur. Phys. J. C 80, 131 (2020)
Dong, Q., Sun, G.H., Toutounji, M., Dong, S.H.: Tetrapartite entanglement measures of GHZ state with nonuniform acceleration. Optics 201, 163487 (2020)
Qiang, W.C., Dong, Q., Sanchez, M.A.M., Sun, G.H., Dong, S.H.: Entanglement property of the Werner state in accelerated frames. Quant. Inf. Process. 18, 314 (2019)
Torres-Arenas, A.J., Lopez-Zuniga, E., Saldana-Herrera, J.A., Dong, Q., Sun, G.H., Dong, S.H.: Tetrapartite entanglement measures of W-class in noninertial frames. Chin. Phys. B 28, 070301 (2019)
Dong, Q., Torres-Arenas, A.J., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys. 14, 21603 (2019)
Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018)
Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)
Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)
Martín-Martínez, E., Garay, L.J., León, J.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82, 064006 (2010)
Wang, J., Pan, Q., Chen, S., Jing, J.: Entanglement of coupled massive scalar field in background of Dilaton black hole. Phys. Lett. B 677, 186–189 (2009)
Wang, J., Pan, Q., Jing, J.: Entanglement redistribution in the Schwarzschild spacetime. Phys. Lett. B 602, 202 (2010)
Esfahani, B.N., Shamirzaie, M., Soltani, M.: Reduction of entanglement degradation and teleportation improvement in Gauss–Bonnet gravity. Phys. Rev. D 84, 025024 (2011)
Han, M., Olson, J.S., Dowling, J.P.: Generating entangled photons from the vacuum by accelerated measurements: quantum information theory meets the Unruh–Davies effect. Phys. Rev. A 78, 022302 (2008)
Ostapchuk, D.C.M., Mann, R.B.: Generating entangled fermions by accelerated measurements on the vacuum. Phys. Rev. A 79, 04233 (2009)
Wang, J., Pan, Q., Jing, J.: Projective measurements and generation of entangled Dirac particles in Schwarzschild spacetime. Ann. Phys. 325, 1190–1197 (2010)
Dehghani, M.H.: Accelerated expansion of the universe in Gauss–Bonnet gravity. Phys. Rev. D 70, 064009 (2004)
Das, S.R., Gibbons, G.W., Mathur, S.D.: Universailty of low energy absorption cross-sections for black holes. Phys. Rev. Lett. 78, 417–419 (1997)
Gibbons, G.W., Steif, A.R.: Anomalous fermion production in gravitational collapse. Phys. Lett. B 314, 13–20 (1993)
Damour, T., Ruffini, R.: Black-hole evaporation in the Klein–Sauter–Heisenberg–Euler formalism. Phys. Rev. D 14, 332 (1976)
Sannan, S.: Heuristic derivation of the probability distributions of particles emitted by a black hole. Gen. Relat. Gravit. 20, 239 (1988)
Zhao, Z., Gui, Y.X.: The connection between Unruh scheme and Damour–Ruffini scheme in Rindler space-time and \(\eta -\varepsilon \) space-time. IL Nuovo Cimento B 109, 355 (1994)
Birrell, N.D., Davies, P.C.W.: Quantum Field in Curved Space. Cambridge University Press, Cambridge (1982)
Cho, H.T., Cornell, A.S., Doukas, J., Naylor, W.: Split fermion quasi-normal modes. Phys. Rev. D 75, 104005 (2007)
Cho, H.T., Cornell, A.S., Doukas, J., Naylor, W.: Fermion excitations of a tense Brane black hole. Phys. Rev. D 77, 041502 (2008)
Camporesi, R., Higuchi, A.: On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces. J. Geom. Phys. 20, 1–18 (1996)
Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford University Press, New York (1997)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant No. 11875025.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jing, L., Jing, J. Generating entangled fermions by projective measurements in Gauss–Bonnet spacetime. Quantum Inf Process 20, 61 (2021). https://doi.org/10.1007/s11128-021-02995-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-02995-4