Abstract
We have considered two-qubit Heisenberg XYZ model subject to an external magnetic field in the presence of the Dzyaloshinskii–Moriya (DM) anisotropic antisymmetric interaction as the working substance of the quantum Otto cycle. At first, a scheme is proposed for thermalization where working substance of the quantum Otto cycle is induced in the presence decoherence. The net work input and the efficiency of the engine are calculated in terms of system parameters. We investigate the effects of (DM) anisotropic antisymmetric interaction and external magnetic field on processes of the Otto cycle. An interesting phenomenon that the model reveals the mode of the cycle is a refrigerator or a heat engine. The results also enable us to determine for some values of parameters, the system is suitable for heat engine or refrigerator. Moreover, we find instances of regimes that the mode of the cycle is neither a refrigerator nor a heat engine.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Geusic, J., Schulz-DuBios, E., Scovil, H.: Quantum equivalent of the carnot cycle. Phys. Rev. 156(2), 343 (1967)
Scovil, H.E., Schulz-DuBois, E.O.: Three-level masers as heat engines. Phys. Rev. Lett. 2(6), 262 (1959)
Maruyama, K., Nori, F., Vedral, V.: Colloquium: the physics of Maxwells demon and information. Rev. Mod. Phys. 81(1), 1 (2009)
Scully, M.O.: Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. Phys. Rev. Lett. 104(20), 207701 (2010)
Huang, X., Wang, T., Yi, X., et al.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86(5), 051105 (2012)
Quan, H.-T., Liu, Y.-X., Sun, C.-P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76(3), 031105 (2007)
Wang, H., Liu, S., He, J.: Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine. Phys. Rev. E 79(4), 041113 (2009)
Zhao, L.-M., Zhang, G.-F.: Entangled quantum Otto heat engines based on two-spin systems with the Dzyaloshinski–Moriya interaction. Quantum Inf. Process. 16(9), 216 (2017)
Azimi, M., Chotorlishvili, L., Mishra, S.K., Vekua, T., Hübner, W., Berakdar, J.: Quantum Otto heat engine based on a multiferroic chain working substance. New J. Phys. 16(6), 063018 (2014)
Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93(14), 140403 (2004)
Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines. ii. Phys. Rev. E 79(4), 041129 (2009)
Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83(3), 031135 (2011)
Altintas, F., Hardal, A.Ü., Müstecaplıoglu, Ö.E.: Quantum correlated heat engine with spin squeezing. Phys. Rev. E 90(3), 032102 (2014)
Abah, O., Lutz, E.: Optimal performance of a quantum Otto refrigerator. EPL 113(6), 60002 (2016)
Lin, S., Song, Z.: Non-Hermitian heat engine with all-quantum-adiabatic-process cycle. J. Phys. A Math. Theor. 49(47), 475301 (2016)
Hewgill, A., Ferraro, A., De Chiara, G.: Quantum correlations and thermodynamic performances of two-qubit engines with local and common baths. Phys. Rev. A 98(4), 042102 (2018)
Roßnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352(6283), 325–329 (2016)
Zou, Y., Jiang, Y., Mei, Y., Guo, X., Du, S.: Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett. 119(5), 050602 (2017)
Harris, S.: Electromagnetically induced transparency and quantum heat engines. Phys. Rev. A 94(5), 053859 (2016)
Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122(11), 110601 (2019)
Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4(4), 241–255 (1958)
Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4(5), 228 (1960)
Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii–Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79(4), 042319 (2009)
Amniat-Talab, M., Jahromi, H.R.: On the entanglement and engineering phase gates without dynamical phases for a two-qubit system with Dzyaloshinski–Moriya interaction in magnetic field. Quantum Inf. Process. 12(2), 1185–1199 (2013)
Li, D.-C., Wang, X.-P., Cao, Z.-L.: Thermal entanglement in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii–Moriya interaction. J. Phys. Condens. Matter 20(32), 325229 (2008)
Türkpençe, D., Altintas, F.: Coupled quantum Otto heat engine and refrigerator with inner friction. Quantum Inf. Process. 18(8), 255 (2019)
Mirmasoudi, F., Ahadpour, S.: Dynamics of super quantum discord and optimal dense coding in quantum channels. J. Phys. A Math. Theor. 51(34), 345302 (2018)
Zhang, G.-F.: Entangled quantum heat engines based on two two-spin systems with dzyaloshinski-moriya anisotropic antisymmetric interaction. The European Physical Journal D 49(1), 123 (2008)
Alicki, R., Fannes, M.: Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87(4), 042123 (2013)
Hovhannisyan, K.V., Perarnau-Llobet, M., Huber, M., Acín, A.: Entanglement generation is not necessary for optimal work extraction. Phys. Rev. Lett. 111(24), 240401 (2013)
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84(4), 1655 (2012)
Milburn, G.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44(9), 5401 (1991)
Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)
Funding
Funding was provided by University of Mohaghegh Ardabili.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ahadpour, S., Mirmasoudi, F. Coupled two-qubit engine and refrigerator in Heisenberg model. Quantum Inf Process 20, 63 (2021). https://doi.org/10.1007/s11128-021-03019-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03019-x