Abstract
Quantum computing is computing beyond classical computing based on quantum phenomena such as superposition and entanglement. While quantum computing is still seeking its shape, its effect is seen in making magnificent strides in the field of computing bringing into bare a new dimension of computing. Nevertheless, just like any other concept or field, it has some challenges, and a lot of research and work need to be done to realize its capabilities and benefits. This review provides an insight into quantum computing models coupled with the identification of some pros and cons. The main contribution of this systematic review is that it summarizes the current state-of-the-art models of quantum computing in various domains. It provides new classifications of quantum models based on the literature reviewed and links results to that of the four major categories of quantum computing models. Assessment reveals that most of the models reviewed are either mathematical or algorithmic even though they are based on quantum operations and circuits.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Availability of data and material
Not applicable.
Code availability
Not applicable.
References
Gamble, S.: Quantum Computing: What It Is, Why We Want It, and How We’re Trying to Get It. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2018 Symposium. National Academies Press (US), Washington, DC (2019)
Coles, P.J., Eidenbenz, S., Pakin, S., Adedoyin, A., Ambrosiano, J., Anisimov, P., Casper, W., Chennupati, G., Coffrin, C., Djidjev, H., Gunter, D., Karra, S., Lemons, N., Lin, S., Lokhov, A., Malyzhenkov, A., Mascarenas, D., Mniszewski, S., Nadiga, B., O’Malley, D., Oyen, D., Prasad, L., Roberts, R., Romero, P., Santhi, N., Sinitsyn, N., Swart, P., Vuffray, M., Wendelberger, J., Yoon, B., Zamora, R., Zhu, W.: Quantum Algorithm Implementations for Beginners. Los Alamos National Laboratory, Los Alamos (2018)
Riedel, M.F.: The European quantum technologies flagship. Quantum Sci. Technol. 2, 030501 (2017)
Tom Garlinghouse for the office of the Dean for Research: Quantum computing: Opening new realms of possibilities. Jan. 21, 2020. https://www.princeton.edu/news/2020/01/21/quantum-computing-opening-new-realms-possibilities
The National Academies Press: Quantum Computing: Progress and Prospects (2019). ISBN 978-0-309-47969-1. https://doi.org/10.17226/25196
Chen, G., Church, D.A., Englert B.G., Zubairy M.S.: Mathematical Models of Contemporary Elementary Quantum Computing Devices. Centre de Recherches Mathematiques. CRM Proceedings and Lecture Notes. volume 33 (2003)
McCaskey, A.J., Dumitrescu, E.F., Liakh, D., Chen, M., Feng, W., Humble, T.S.: A language and hardware independent approach to quantum–classical computing. SoftwareX 7, 245–254 (2018). https://doi.org/10.1016/j.softx.2018.07.007
Mavroeidis, V., Vishi, K., Zych, M.D., Josang, A.: The impact of quantum computing on present crytography. Int. J. Adv. Comput. Sci. Appl. 9(3), 1–2 (2018)
Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum: the open journal for quantum science, vol 2, 79 (2018) arXiv:1801.00862v3
Claude C.S., Casti, J., Dinneen M.J.: Unconventional Models of Computation. Springer, Singapore, ISBN 981-3083-69-7 (1998)
Raychev, N.: Multi-functional formalized quantum circuits. Int. J. Sci. Eng. Res. 6(9), 1302–1309 (2015)
Raychev, N.: Formalized quantum model for solving the eigenfunctions. J. Quantum Inf. Sci. 6, 16–30 (2016)
da Silva, A.J., Ludermir, T.B., de Oliveira, W.R.: Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Netw. (2016). https://doi.org/10.1016/j.neunet.2016.01.002
Gao, X., Wang, S.-T., Duan, L.-M.: Quantum supremacy for simulating a translation-invariant ising spin model. Phys. Rev. Lett. (2017). https://doi.org/10.1103/physrevlett.118.040502
Qiu, D., Li, L.: An overview of quantum computation models: quantum automata. Front. Comput. Sci. China 2(2), 193–207 (2008). https://doi.org/10.1007/s11704-008-0022-y
Gupta, S., Zia, R.K.P.: Quantum Neural Networks. J. Comput. Syst. Sci. 63(3), 355–383 (2001). https://doi.org/10.1006/jcss.2001.1769
Svore, K.M., Cross, A.W., Chuang, I.L., Aho, A.V.: A flow-map model for analyzing pseudothresholds in fault-tolerant quantum computing. Quantum Information and Computation. arXiv:quant-ph/0508176v2. 6(9) (2006)
Hameroff, S.: Quantum computation in brain microtubules? The Penrose-Hameroff “Orch OR” model of consciousness. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 356(1743), 1869–1896 (1998). https://doi.org/10.1098/rsta.1998.0254
Rosa, L.P., Faber, J.: Quantum models of the mind: are they compatible with environment decoherence? Phys. Rev. E 70, 031902 (2004). https://doi.org/10.1103/PhysRevE.70.031902
Gallego, M.B.: The bohm-penrose-hameroff model for consciousness and free will theoretical foundations and empirical evidences. Pensamiento 67(254), 661–674 (2011)
Platel, M.D., Schliebs, S., Kasabov N.: Quantum-Inspired Evolutionary Algorithm: A Multimodel EDA. IEEE Transactions on Evolutionary Computation, vol 13, No. 6 (2009)
Hahanov, V., Hahanova, I., Guz, O., Abbas, M.A.: Quantum models for data structures and computing. In: Proceedings of International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science, Lviv-Slavske, 2012, pp. 291–291 (2012).
Araujo de Resendea, M.F., Ibieta Jimeneza, J.P., Lorca Espiroa, J.: Cyclic Abelian Quantum Double Models coupled with matter: remarks about the presence of non-Abelian fusion rules, and algebraic and topological orders. arXiv:1808.09537v1 (2018)
Andrist, R.S., Wootton, J.R., Katzgraber, H.G.: Error thresholds for Abelian quantum double models: Increasing the bit-flip stability of topological quantum memory. Phys. Rev. A 91, 042331 (2015)
Perus, M., Loo, C.K.: Biological and Quantum Computing for Human Vision: Holonomic Models and Applications. IGI Global Disseminator of Knowledge (2010)
Wiebe, N., Kapoor, A., Svore, K.M.: Quantum Perceptron Models. Quantum Physics. Cornell University. arXiv:1602.04799. NIPS (2016)
Raychev, N.: Quantum computing models for algebraic applications. Int. J. Sci. Eng. Res. 6(8), 1281–1288 (2015)
Wecker, D., Svore, K.M.: LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing. Microsoft Research. arXiv:1402.4467v1 [quant-ph] (2014)
Steiger, D.S., Haner, T., Troyer, M.: ProjectQ: An Open Source Software Framework for Quantum Computing. Quantum. arXiv:1612.08091v2 [quant-ph] (2018)
Zoufal, C., Lucchi, A., Woerner, S.: Quantum generative adversarial networks for learning and loading random distributions. NPJ Quantum Inf. (2019). https://doi.org/10.1038/s41534-019-0223-2
He, Z., Li, L., Zheng, S., Huang, Z., Situ, H.: A Conditional generative model based on quantum circuit and classical optimization. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04005-x
Marcello, B.: Quantum-classical generative models for machine learning. Doctoral thesis (Ph.D), UCL (University College London) (2019)
Sels, D., Demle, E.: Quantum generative model for sampling many-body spectral functions. arXiv: 1910.14213v1 [quant-ph] (2019)
Sadowski, P.: Machine Learning Kernel Method from a Quantum Generative Model. arXiv: 1907.05103v1 [quant-ph]. (2019)
Gao, X., Zhang, Z.-Y., Duan, L.-M.: A quantum machine learning algorithm based on generative models. Sci. Adv. 4(12), eaat9004 (2018). https://doi.org/10.1126/sciadv.aat9004
Gavoille, C., Kosowski, A., Markiewicz, M.: What Can be Observed Locally? Round-based Models for Quantum Distributed Computing. In: 2009 International Symposium on Distributed Computing. https://doi.org/10.1007/978-3-642-04355-0_26
Beaudry, N.J., Moroder, T., Lütkenhaus, N., Lvovsky, A.: Squashing models for optical measurements in quantum communication. AIP Conf. Proc. (2009). https://doi.org/10.1063/1.3131337
Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the forty-third annual ACM symposium on Theory of computing, ACM, 2011, 333–42 (2011)
Krovi, H.: Models of optical quantum computing. Nanophotonics (2017). https://doi.org/10.1515/nanoph-2016-0136
Rohde, P.P., Ralph, T.C.: Error models for mode mismatch in linear optics quantum computing. Phys. Rev. A (2006). https://doi.org/10.1103/physreva.73.062312
Gross, J.A., Caves, C.M., Milburn, G.J., Combes, J.: Qubit models of weak continuous measurements: markovian conditional and open-system dynamics. Quantum Sci. Technol. 3(2), 024005 (2018). https://doi.org/10.1088/2058-9565/aaa39f
Micheli, A., Brennen, G.K., Zoller, P.: A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2(5), 341–347 (2006). https://doi.org/10.1038/nphys287
Miller, C.A., Colbeck, R., Shi, Y.: Keyring models: an approach to steerability. J. Math. Phys. 59(2), 022103 (2018). https://doi.org/10.1063/1.5006199
Alexandru, A., Bedaque, P.F., Lamm, H., Lawrence, S.: σ Models on quantum computers. Phys. Rev. Lett. (2019). https://doi.org/10.1103/physrevlett.123.090501
Li, L., Feng, Y.: On hybrid models of quantum finite automata. J. Comput. Syst. Sci. 81(7), 1144–1158 (2015). https://doi.org/10.1016/j.jcss.2015.01.001
Flitney, A.P., Abbott, D.: Quantum models of Parrondo’s games. Phys. A 324(1–2), 152–156 (2003). https://doi.org/10.1016/s0378-4371(02)01909-x
Jiang, Z., Piani, M., Caves, C.M.: Ancilla models for quantum operations: for what unitaries does the ancilla state have to be physical? Quantum Inf. Process. 12(5), 1999–2017 (2012). https://doi.org/10.1007/s11128-012-0500-x
Malherbe, O., Scott, P., Selinger, P.: Presheaf models of quantum computation: an outline. In: Lecture Notes in Computer Science, pp. 178–194 (2013). https://doi.org/10.1007/978-3-642-38164-5_13
Geller, M.R., Zhou, Z.: Efficient error models for fault-tolerant architectures and the Pauli twirling approximation. Phys. Rev. A (2013). https://doi.org/10.1103/physreva.88.012314
Peropadre, B., Aspuru-Guzik, A., Garcia-Ripoll, J.J.: Spin models and boson sampling. Bull. Am. Phys. Soc. (2016). https://doi.org/10.13039/501100000780
Albarrán-Arriagada, F., Lamata, L., Solano, E., Romero, G., Retamal, J.C.: Spin-1 models in the ultrastrong-coupling regime of circuit QED. Phys. Rev. A (2018). https://doi.org/10.1103/physreva.97.022306
Dai, Q.-R., Jing, H.: Geometric quantum computing and dissipation models. Int. J. Theor. Phys. 45(11), 2109–2117 (2006). https://doi.org/10.1007/s10773-006-9177-1
Biamonte, J.D., Allen, J.S., Perkowski, M.A.: Fault models for quantum mechanical switching networks. J. Electron. Test. 26(5), 499–511 (2010). https://doi.org/10.1007/s10836-010-5171-x
Glover, F., Kochenberger, G., Du, Y.: Quantum Bridge Analytics I: A Tutorial on Formulating and Using QUBO Models. (2018). arXiv:1811.11538
Kells, G., Lahtinen, V., Vala, J.: Kitaev spin models from topological nanowire networks. Phys. Rev. B (2014). https://doi.org/10.1103/physrevb.89.075122
Chamon, C., Mucciolo, E.R., Ruckenstein, A.E., Yang, Z.-C.: Quantum vertex model for reversible classical computing. Nat. Commun. 8, 15303 (2017). https://doi.org/10.1038/ncomms15303
Irikura, K.K., Johnson, R.D., Kacker, R.N.: Uncertainty Associated With Virtual Measurements From Computational Quantum Chemistry Models Using the Guide to the Expression of Uncertainty in Measurement. NIST. (2004) Updated February 17, 2017. https://www.nist.gov/publications/uncertainty-associated-virtual-measurements-computational-quantum-chemistry-models
Schiro, M., Scarlatella, O.: Quantum impurity models coupled to Markovian and non-Markovian baths. J. Chem. Phys. 151(4), 044102 (2019). https://doi.org/10.1063/1.5100157
Molina, A., Watrous, J.: Revisiting the simulation of quantum Turing machines by quantum circuits. Proc. R. Soc. A: Math. Phys. Eng. Sci. 475(2226), 20180767 (2019). https://doi.org/10.1098/rspa.2018.0767
Shi, P., Li, N., Wang, S., Liu, Z., Ren, M., Ma, H.: Quantum multi-user broadcast protocol for the “platform as a service” model. Sensors 19(23), 5257 (2019). https://doi.org/10.3390/s19235257
Sharir, O., Levine, Y., Wies, N., Carleo, G., Shashua, A.: Deep autoregressive models for the efficient variational simulation of many-body quantum systems. Phys. Rev. Lett. (2020). https://doi.org/10.1103/physrevlett.124.020503
Yang, G., Ping, J., Segovia, J.: Double-heavy tetraquarks. Phys. Rev. D 101, 014001 (2020)
Dubosq, C., Calvo, F., Rapacioli, M., Dartois, E., Pino, T., Falvo, C., Simon, A.: Quantum modeling of the optical spectra of carbon cluster structural families and relation to the interstellar extinction UV bump. Astron. Astrophys. 634, A62 (2020). https://doi.org/10.1051/0004-6361/201937090
Ivanov, I.A., Kim, K.T.: Simple man model in the Heisenberg picture. Commun. Phys. (2020). https://doi.org/10.1038/s42005-019-0279-5
Yang, G., Ping, J., Ortega, P.G., Segovia, J.: Triply heavy baryons in the constituent quark model. Chinese Physics C (2020) Vol. 44, No. 2
Omer, B.: Quantum Programming in QCL. Institute of Information Systems, Technical University of Vienna (2000). http://tph.tuwien.ac.at/~oemer/doc/quprog.pdf
Omer, B.: Classical concepts in Quantum Programming. Institute of Information Systems, Technical University of Vienna (2002). http://cds.cern.ch/record/592180/files/0211100.pdf
Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Kun, J.: Motivation for Quantum Computing. (2014). https://jeremykun.com/2014/12/08/a-motivation-for-quantum-computing/
Lew, K.P.: IBM vs Google vs Intel—The race to quantum computing (2018). https://datacentrenews.eu/story/ibm-vs-google-race-quantum-computing
IBM: Quantum computers are rapidly emerging. (2020). https://www.research.ibm.com/5-in-5/quantum-computing/
Chen, W., Ye, Z., Li, L.: Characterization of exact one-query quantum algorithms. Phys. Rev. A 101, 022325 (2020). https://doi.org/10.1103/PhysRevA.101.022325
Guerra, E.S.: A Cavity QED Implementation of Deutsch-Jozsa Algorithm. Cornell University. Quantum Physics (quant-ph). (2004). arXiv:quant-ph/0410188. https://arXiv.org/pdf/quant-ph/0410188.pdf
Siewert, J., Fazio, R.: Implementation of the Deutsch-Jozsa algorithm with Josephson charge qubits. Cornell University. Quantum Physics (quant-ph). (2001). arXiv:quant-ph/0410188. https://arXiv.org/pdf/quant-ph/0112135.pdf
Xie, H., Yang, L.: Using Bernstein-Vazirani algorithm to attack block ciphers. Des. Codes Crypt. (2018). https://doi.org/10.1007/s10623-018-0510-5
Lecturer: Yongshan Ding, Pranav Gokhale , Scribe: Shankar G. Menon CMSC 33001: Novel Computing Architectures and Technologies. (2018). http://people.cs.uchicago.edu/~ftchong/33001/lecture08.pdf
Hamouda, I., Bahaa-Eldin, A.M., Said, H.: A generalized Grover’s algorithm with access control to quantum databases. In: 2016 11th International Conference on Computer Engineering & Systems (ICCES) (2016). https://doi.org/10.1109/icces.2016.7822015
Kang, K.: Two improvements in Grover’s algorithm. In: The 27th Chinese Control and Decision Conference (2015 CCDC) (2015). https://doi.org/10.1109/ccdc.2015.7162096
Shrivastava, P., Soni, K. K., Rasool, A.: Evolution of quantum computing based on Grover’s search algorithm. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (2019). https://doi.org/10.1109/icccnt45670.2019.8944676
Lipton, R.J., Regan, K.W.: Grover's algorithm. In: Quantum Algorithms via Linear Algebra: A Primer, MITP, pp. 115–128 (2014)
Mandviwalla, A., Ohshiro, K., Ji, B.: Implementing Grover’s algorithm on the IBM quantum computers. In: 2018 IEEE International Conference on Big Data (Big Data) (2018). https://doi.org/10.1109/bigdata.2018.8622457
Benchasattabuse, N., Chongstitvatana, P., Apomtewan, C.: Quantum rough counting and its application to Grover’s search algorithm. In: 2018 3rd International Conference on Computer and Communication Systems (ICCCS) (2018). https://doi.org/10.1109/ccoms.2018.8463331
Arabul, E., Paesani, S., Tancock, S., Rarity, J., Dahnoun, N.: A precise high count-rate FPGA based multi-channel coincidence counting system for quantum photonics applications. IEEE Photonics J. 12(2), 1–14 (2020). https://doi.org/10.1109/JPHOT.2020.2968724
Lipton, R.J., Regan, K.W.: Simon's algorithm. In: Quantum Algorithms via Linear Algebra: A Primer, MITP, pp. 93–96 (2014)
Sihare, S., Nath, V.V.: Multiple entities search through Simon’s quantum algorithm. In: 2017 IEEE 7th International Advance Computing Conference (IACC) (2017). https://doi.org/10.1109/iacc.2017.0162
Mohammadbagherpoor, H., Oh, Y.-H., Dreher, P., Singh, A., Yu, X., Rindos, A.J.: An Improved Implementation Approach for Quantum Phase Estimation on Quantum Computers. In: 2019 IEEE International Conference on Rebooting Computing (ICRC) (2019). https://doi.org/10.1109/icrc.2019.8914702
Lipton, R.J., Regan, K.W.: Shor's algorithm. In: Quantum Algorithms via Linear Algebra: A Primer, MITP, pp. 97–108 (2014)
Chouhan, N., Saini, H. K., Jain, S.C.: A novel technique to modify the SHOR’S algorithm—Scaling the encryption scheme. In: 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT) (2017). https://doi.org/10.1109/icecct.2017.8117822
Nagaich, S., Goswami, Y.C.: Shor’s algorithm for quantum numbers using MATLAB simulator. In: 2015 Fifth International Conference on Advanced Computing & Communication Technologies (2015). https://doi.org/10.1109/acct.2015.16
Upton, J.T.: The Hidden Subgroup Problem for Generalized Quaternions. In: 2010 Fourth International Conference on Quantum, Nano and Micro Technologies (2010). https://doi.org/10.1109/icqnm.2010.23
Jozsa, R.: Quantum factoring, discrete logarithms, and the hidden subgroup problem. Comput. Sci. Eng. 3(2), 34–43 (2001). https://doi.org/10.1109/5992.909000
Clifford, P., Clifford, R.: The classical complexity of boson sampling, SODA '18: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 146–155 (2018)
Kalmynin, A.B.: On the first moment of the Gauss sum. Math. Notes 99(3–4), 470–476 (2016). https://doi.org/10.1134/s0001434616030184
Shen, S., Zhang, W.: On the quartic Gauss sums and their recurrence property. Adv. Differ. Equ. (2017). https://doi.org/10.1186/s13662-017-1097-2
Ren, G., He, D., Zhang, T.: On general partial Gaussian sums. J. Inequal. Appl. (2016). https://doi.org/10.1186/s13660-016-1238-2
Kao, M.-Y. (ed.): Encyclopedia of Algorithms (2016). https://doi.org/10.1007/978-1-4939-2864-4
Portugal, R.: Element distinctness revisited. Quantum Inf. Process. (2018). https://doi.org/10.1007/s11128-018-1930-x
Le Gall, F., Nakajima, S.: Quantum algorithm for triangle finding in sparse graphs. Algorithmica 79(3), 941–959 (2017). https://doi.org/10.1007/s00453-016-0267-z
Carette, T., Lauriere, M., Magniez, F. Extended Learning Graphs for Triangle Finding. Algorithmica. https://doi.org/10.1007/s00453-019-00627-z
Ambainis, A.: Quantum algorithms for formula evaluation. Cornell University. Quantum Physics (2010). arXiv:1006.3651 [quant-ph]. https://arXiv.org/pdf/1006.3651.pdf
Jeffrey, S., Kimmel, S.: Quantum Algorithms for Graph Connectivity and Formula Evaluation. Cornell University. Quantum Physics (2019). arXiv:1704.00765 [quant-ph]. https://arXiv.org/pdf/1704.00765.pdf
Fortin, S., Gadella, M., Holik, F., Losada, M.: Evolution of quantum observables: from non-commutativity to commutativity. Soft. Comput. (2019). https://doi.org/10.1007/s00500-019-04546-7
Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) Automata, Languages and Programming, ICALP 2005. Lecture Notes in Computer Science, vol. 3580. Springer, Berlin (2005)
Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. Algorithmica 48(3), 221–232 (2007). https://doi.org/10.1007/s00453-007-0057-8
Lescop, C. (n.d.). Knot Invariants and Configuration Space Integrals. In: Lecture Notes in Physics, pp. 1–57. https://doi.org/10.1007/11374060_1
Jackson, D.M., Moffatt, I.: An Introduction to Quantum and Vassiliev Knot Invariants. CMS Books in Mathematics (2019). https://doi.org/10.1007/978-3-030-05213-3
Marathe, K.: Knot and link invariants. In: Topics in Physical Mathematics. Springer, London (2010)
Sanders, B.C.: Efficient algorithms for universal quantum simulation. In: Lecture Notes in Computer Science, pp. 1–10 (2013). https://doi.org/10.1007/978-3-642-38986-3_1
Sansoni, L.: Introduction to quantum simulation. In: Integrated Devices for Quantum Information with Polarization Encoded Qubits. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer, Cham (2014)
Doronin, S.I., Fel’dman, E.B., Zenchuk, A.I.: Solving systems of linear algebraic equations via unitary transformations on quantum processor of IBM Quantum Experience. Quantum Inf. Process. (2020). https://doi.org/10.1007/s11128-019-2570-5
Marsh, A.S., Wang, J.B.: A quantum walk-assisted approximate algorithm for bounded NP optimisation problems. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-019-2171-3A
Zhou, L., Wang, S., Choi, S., Pichler, H., Lukin, M.D.: Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices. (2019). https://arXiv.org/pdf/1812.01041.pdf
Choi, J., Kim, J.: A tutorial on quantum approximate optimization algorithm (QAOA): fundamentals and applications. In: 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea (South), pp. 138–142 (2019)
Wang, D., Higgott, O., Brierley, S.: Accelerated Variational Quantum Eigensolver (2019) arXiv:1802.00171 [quant-ph]. https://arXiv.org/pdf/1802.00171.pdf
Gershon, T.: The Variational Quantum Eigensolver: An unsung hero of approximate quantum computing. (2017). https://developer.ibm.com/dwblog/2017/quantum-computing-qubit-vqe-variational-quantum-eigensolver/
Wang, B.: Quantum algorithms for machine learning. XRDS: Crossroads. ACM Mag. Students 23(1), 20–24 (2016). https://doi.org/10.1145/2983535
Onsman, A.: Types of Computing Environments. (2018). https://www.tutorialspoint.com/Types-of-Computing-Environments
Wikipedia: Quantum logic gate (2020). https://en.wikipedia.org/wiki/Quantum_logic_gate
Da Silva, A.J., Ludermir, T.B., de Oliveira, W.R.: Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Netw. 76, 55–64 (2016). https://doi.org/10.1016/j.neunet.2016.01.002
Ambainis, A., Freivalds, R.: 1-way quantum finite automata: Strengths, weaknesses and generalizations. Conference: Proceedings of the 39th Annual Symposium on Foundations of Computer Science. (Nov. 1998). https://www.researchgate.net/publication/262272875_1-way_quantum_finite_automata_Strengths_weaknesses_and_generalizations
Humble, T.S,, Sadlier, R.J., Keith, A., Britt, K.A.: Simulated Execution of Hybrid Quantum Computing Systems (2018). https://www.osti.gov/servlets/purl/1468202
Sevilla, J., Riedel, C.J.: Forecasting timelines of quantum computing (2020). arXiv:2009.05045 [quant-ph]
Boixo, S., Smelyanskiy, V.N., Shabani, A., Isakov, S.V., Dykman, M., Denchev, V.S., Neven, H.: Computational multiqubit tunnelling in programmable quantum annealers. Nat. Commun. 7, 10327 (2016)
Martin-Mayor, V., Hen, I.: Unraveling quantum annealers using classical hardness. Sci. Rep. (2015). https://doi.org/10.1038/srep15324
Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning. Phys. Rev. A (2016). https://doi.org/10.1103/physreva.94.022308
Amin, M.H.: Searching for quantum speedup in quasistatic quantum annealers. Phys. Rev. A (2015). https://doi.org/10.1103/physreva.92.052323
Winci, W., Buffoni, L., Sadeghi, H., Khoshaman, A., Andriyash, E., Amin, M.H. (2020). A path towards quantum advantage in training deep generative models with quantum annealers. Machine Learning: Science and Technology, Vol. 1 No. 4
Gardas, B., Deffner, S.: Quantum fluctuation theorem for error diagnostics in quantum annealers. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-35264-z
Perdomo-Ortiz, A., O’Gorman, B., Fluegemann, J., Biswas, R., Smelyanskiy, V.N.: Determination and correction of persistent biases in quantum annealers. Sci. Rep. (2016). https://doi.org/10.1038/srep18628
Ayanzadeh, R., Halem, M., Finin, T. (2020). An ensemble approach for compressive sensing with quantum annealers. IEEE International Geoscience and Remote Sensing Symposium. https://ebiquity.umbc.edu/paper/html/id/907/An-Ensemble-Approach-for-Compressive-Sensing-with-Quantum-Annealers
Mandra, S., Katzgraber, H.G., Thomas, C. (2017). The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again). Quantum Science and Technology Vol. 2 No. 3
Zhu, Z., Ochoa, A.J., Schnabel, S., Hamze, F., Katzgraber, H.G.: Best-case performance of quantum annealers on native spin-glass benchmarks: how chaos can affect success probabilities. Phys. Rev. A 93, 012317 (2016)
Vyskocil, T. Djidjev, H.: Simple constraint embedding for quantum annealers. In: 2018 IEEE International Conference on Rebooting Computing (ICRC), McLean, VA, USA, 2018, pp. 1–11 (2018). https://doi.org/10.1109/ICRC.2018.8638624
Adame, J.I. McMahon, P.L.: Inhomogeneous driving in quantum annealers can result in orders-of-magnitude improvements in performance. Quantum Sci. Technol. 5(3), 035011 (2020)
Ayanzadeh, R., Dorband, J., Halem, M., Finin, T.: Post-Quantum Error-Correction for Quantum Annealers. Quantum Physics (quant-ph); Emerging Technologies (cs.ET) (2020). arXiv:2010.00115 [quant-ph]
Marshall, J., Rieffel, E.G., Hen, I.: Thermalization, freeze-out, and noise: deciphering experimental quantum annealers. Phys. Rev. Appl. 8, 064025 (2017)
Perdomo-Ortiz, A., Fluegemann J., Biswas, R., Smelyanskiy, V.N.: A performance estimator for quantum annealers: gauge selection and parameter setting. Quantum Physics. (2015)arXiv:1503.01083 [quant-ph] https://arxiv.org/abs/1503.01083
Pudenz, K.L.: Parameter setting for quantum annealers. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC) (2016). https://doi.org/10.1109/hpec.2016.7761619
Vinci, W., Lidar, D.A.: Scalable effective-temperature reduction for quantum annealers via nested quantum annealing correction. Phys. Rev. A 97, 022308 (2018)
Marshall, J., Venturelli, D., Hen, I., Rieffel, E.G.: Power of pausing: advancing understanding of thermalization in experimental quantum annealers. Phys. Rev. Appl. 11, 044083 (2019)
Jałowiecki, K., Więckowski, A., Gawron, P., Gardas, B.: Parallel in time dynamics with quantum annealers. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-70017-x
Więckowski, A., Deffner, S., Gardas, B.: Disorder-assisted graph coloring on quantum annealers. Phys. Rev. A 100, 062304 (2019)
Bapst, F., Bhimji, W., Calafiura, P., Gray, H., Lavrijsen, W., Linder, L., Smith, A.: A pattern recognition algorithm for quantum annealers. Comput. Softw. Big Sci. 4, 1 (2020). https://doi.org/10.1007/s41781-019-0032-5
Ayanzadeh, R.: Leveraging Artificial Intelligence to Advance Problem-Solving with Quantum Annealers. University of Maryland, Baltimore County (2020). https://ebiquity.umbc.edu/paper/html/id/890/Leveraging-Artificial-Intelligence-to-Advance-Problem-Solving-with-Quantum-Annealers
Inoue, D., Yoshida, H.: Model predictive control for finite input systems using the D-wave quantum annealer. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-58081-9
Sadayappan, P., Chamberlain, B. L., Juckeland, G., Ltaief, H. (eds.).: High Performance Computing. In: Lecture Notes in Computer Science (2020). https://doi.org/10.1007/978-3-030-50743-5
Hebrard, E., Musliu, N. (eds.): Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2020. Lecture Notes in Computer Science, vol. 12296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4_8
Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2014). https://doi.org/10.1007/s11128-014-0892-x
Hen, I.: How fast can quantum annealers count? J. Phys. A: Math. Theor. 47(23), 235304 (2014)
Copenhaver, J., Wasserman, A., Wehefritz-Kaufmann, B.: Using quantum annealers to calculate ground state properties of molecules. Quantum Physics (2020). arXiv:2009.10779 [quant-ph]
Albash, T., Martin-Mayor, V., Hen, I.: Temperature scaling law for quantum annealing optimizers. Phys. Rev. Lett. 119, 110502 (2017)
Hamerly, R., Inagaki, T., McMahon, P.L., Venturelli, D., Marandi, A., Onodera, T., Ng, E., Langrock, C., Inaba, K., Honjo, T., Enbutsu, K., Umeki, T., Kasahara, R., Utsunomiya, S., Kako, S., Kawarabayashi, K.I., Byer, R.L., Fejer, M.M., Mabuchi, H., Englund, D., Rieffe, E., Takesue, H., Yamamoto, Y.: Experimental investigation of performance differences between coherent Ising machines and a quantum annealer. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aau0823
Booth, M., Dahl, E., Furtney, M., Reinhardt, S.P.: Abstractions considered helpful: a tools architecture for quantum annealers. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC) (2016). https://doi.org/10.1109/hpec.2016.7761625
Pelofske, E., Hahn, G., Djidjev, H. (2020). Inferring the Dynamics of the State Evolution During Quantum Annealing. Quantum Physics, arXiv:2009.06387 [quant-ph]
Hen, I., Spedalieri, F.M.: Quantum annealing for constrained optimization. Phys. Rev. Appl. 5, 034007 (2016)
Hu, F., Lamata, L., Wang, C., Chen, X., Solano, E., Sanz, M.: Quantum advantage in cryptography with a low-connectivity quantum annealer. Phys. Rev. Appl. 13, 054062 (2020)
Cruz-Santos, W., Venegas-Andraca, S.E., Lanzagorta, M.: A QUBO formulation of minimum multicut problem instances in trees for D-wave quantum annealers. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-53585-5
Ayanzadeh, R., Mousavi, S., Halem, M., Finin, T. (2019). Quantum Annealing Based Binary Compressive Sensing with Matrix Uncertainty. Quantum Physics, arXiv:1901.00088 [cs.IT]
Genin, S.N., Ryabinkin, I.G., Izmaylov, A.F. (2019). Quantum chemistry on quantum annealers. Quantum Physics, arXiv:1901.04715 [physics.chem-ph]
Liu, J., Yao, K.T., Spedalieri, F.: Dynamic topology reconfiguration of Boltzmann machines on quantum annealers. MDPI (2020). https://doi.org/10.3390/e22111202
Weber, S.J., Samach, G.O., Hover, D., Gustavsson, S., Kim, D.K., Melville, A., Rosenberg, D., Sears, A.P., Yan, F., Joder, J.L., Oliver, W.D., Kerman, A.J.: Coherent coupled qubits for quantum annealing. Phys. Rev. Appl. 8, 014004 (2017)
Pakin, S.: Targeting classical code to a quantum annealer. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems—ASPLOS’19 (2019). https://doi.org/10.1145/3297858.3304071
Streif, M., Neukart, F., Leib, M.: Solving quantum chemistry problems with a D-wave quantum annealer. In: Lecture Notes in Computer Science, pp. 111–122 (2019). https://doi.org/10.1007/978-3-030-14082-3_10
Denchev, V.S., Boixo, S., Isakov, S.V., Ding, N., Babbush, R., Smelyanskiy, V., Martinis, J., Neven, H.: What is the computational value of finite-range tunneling? Phys. Rev. X 6, 031015 (2016)
King, J., Yarkoni, S., Raymond, J., Ozfidan, I., King, A.D., Nevisi, M.M., McGeoch, C.C.: Quantum annealing amid local ruggedness and global frustration. J. Phys. Soc. Jpn. 88(6), 061007 (2019). https://doi.org/10.7566/jpsj.88.061007
Okada, S., Ohzeki, M., Terabe, M., Taguchi, S.: Improving solutions by embedding larger subproblems in a D-Wave quantum annealer. Sci. Rep. 9, 2098 (2019). https://doi.org/10.1038/s41598-018-38388-4
Rosenberg, G., Vazifeh, M., Woods, B., Haber, E.: Building an iterative heuristic solver for a quantum annealer. Comput. Optim. Appl. 65(3), 845–869 (2016). https://doi.org/10.1007/s10589-016-9844-y
Rosenberg, G., Haghnegahdar, P., Goddard, P., Carr, P., Wu, K., de Prado, M.L.: Solving the optimal trading trajectory problem using a quantum annealer. IEEE J. Sel. Top. Signal Process. 10(6), 1053–1060 (2016)
Karimi, S., Ronagh, P.: Practical integer-to-binary mapping for quantum annealers. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-019-2213-x
Yarkoni, S., Wang, H., Plaat, A., Bäck, T.: Boosting quantum annealing performance using evolution strategies for annealing offsets tuning. In: Feld, S., Linnhoff-Popien, C. (eds.) Quantum Technology and Optimization Problems, QTOP 2019. Lecture Notes in Computer Science, vol. 11413. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_14
Das, A., Suzuki, S.: Quo Vadis quantum annealing? Eur. Phys. J. Spec. Top. 224(1), 5–13 (2015). https://doi.org/10.1140/epjst/e2015-02337-1
Wang, X.: Quest towards “factoring larger integers with commercial D-Wave quantum annealing machines.” Sci. China Phys. Mech. Astron. (2019). https://doi.org/10.1007/s11433-018-9337-5
Mandal, A.K., Panday, M., Biswas, A., Goswami, S., Chakrabarti, A., Chakraborty, B.: An approach of feature subset selection using simulated quantum annealing. In: Sharma, N., Chakrabarti, A., Balas, V., Martinovic, J. (eds.) Data Management, Analytics and Innovation. Advances in Intelligent Systems and Computing, vol. 1174. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5616-6_10
Kobayashi, H.: R&D of a quantum-annealing assisted next generation HPC infrastructure and its killer applications. In: Resch, M., Kovalenko, Y., Bez, W., Focht, E., Kobayashi, H. (eds.) Sustained Simulation Performance 2018 and 2019. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39181-2_1
Kurowski, K., Wȩglarz, J., Subocz, M., Różycki, R., Waligóra, G.: Hybrid quantum annealing heuristic method for solving job shop scheduling problem. In: Krzhizhanovskaya, V. (ed.) Computational Science—ICCS 2020. Lecture Notes in Computer Science, vol. 12142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_39
Mukherjee, S., Chakrabarti, B.: Multivariable optimization: quantum annealing and computation. Eur. Phys. J. Spec. Top. 224, 17–24 (2015). https://doi.org/10.1140/epjst/e2015-02339-y
Borle, A., Lomonaco, S.J.: Analyzing the quantum annealing approach for solving linear least squares problems. In: Das G., Mandal P., Mukhopadhyaya K., Nakano S. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science, vol. 11355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10564-8_23
Peng, W., Wang, B., Hu, F., et al.: Factoring larger integers with fewer qubits via quantum annealing with optimized parameters. Sci. China Phys. Mech. Astron. 62, 60311 (2019). https://doi.org/10.1007/s11433-018-9307-1
Zobov, V., Pichkovskiy, I.: Associative memory on qutrits by means of quantum annealing. Quantum Inf. Process. 19, 342 (2020). https://doi.org/10.1007/s11128-020-02851-x
Vyskočil, T., Pakin, S., Djidjev, H.N.: Embedding inequality constraints for quantum annealing optimization. In: Feld S., Linnhoff-Popien C. (eds) Quantum Technology and Optimization Problems. QTOP 2019. Lecture Notes in Computer Science, vol 11413. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_2
Liu, Z., Li, S., Ge, Y.: Numerical computation of a mixed-integer optimal control problem based on quantum annealing. J. Shanghai Jiaotong Univ. (Sci.) 25, 623–629 (2020). https://doi.org/10.1007/s12204-020-2220-1
Leon, F., Lupu, A.Ş., Bădică, C.: Multiagent coalition structure optimization by quantum annealing. In: Nguyen N., Papadopoulos G., Jędrzejowicz P., Trawiński B., Vossen G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science, vol. 10448. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67074-4_32
Bottarelli, L., Bicego, M., Denitto, M., Di Pierro, A., Farinelli, A.: A quantum annealing approach to biclustering. In: Martín-Vide C., Mizuki T., Vega-Rodríguez M. (eds) Theory and Practice of Natural Computing. TPNC 2016. Lecture Notes in Computer Science, vol. 10071. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49001-4_14
Behrman, E.C., Nguyen, N.H., Steck, J.E., McCann, M.: Quantum neural computation of entanglement is robust to noise and decoherence. In: Quantum Inspired Computational Intelligence, pp. 3–32 (2017). https://doi.org/10.1016/b978-0-12-804409-4.00001-2
Killoran, N., Bromley, T.R., Arrazola, J.M., Schuld, M., Quesada, N., Lloyd, S.: Continuous-variable quantum neural networks. Phys. Rev. Res. 1, 033063 (2019)
Bausch, J.: Recurrent Quantum Neural Networks. Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020)
Ivancevic, V.G., Ivancevic, T.T.: Quantum. Neural Comput. (2010). https://doi.org/10.1007/978-90-481-3350-5
Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11, 808 (2020). https://doi.org/10.1038/s41467-020-14454-2
Ventura, D.: On the utility of entanglement in quantum neural computing. IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222) (2001). https://doi.org/10.1109/ijcnn.2001.939598
Verdon, G., Broughton, M., McClean, J.R., Sung, K.J., Babbush, R., Jiang, Z., Neven, H., Mohseni, M.: Learning to learn with quantum neural networks via classical neural networks. Quantum Physics (2019). arXiv:1907.05415 [quant-ph]
Farhi, E., Neven, H.: Classification with Quantum Neural Networks on Near Term Processors. Quantum Physics (2018). arXiv:1802.06002 [quant-ph]
Wright, L.G., McMahon, P.L.: The Capacity of Quantum Neural Networks. In: Conference on Lasers and Electro-Optics OSA Technical Digest (Optical Society of America, 2020), paper JM4G.5 (2020) https://doi.org/10.1364/CLEO_AT.2020.JM4G.5
Niu, X.F., Ma, W.P.: Design of a novel quantum neural network. Laser. Phys. Lett. 17, 105208 (2020)
Jeswal, S.K., Chakraverty, S.: Recent developments and applications in quantum neural network: a review. Arch. Comput. Methods Eng. (2018). https://doi.org/10.1007/s11831-018-9269-0
Du, Y., Hsieh, M.H., Liu, T., You, S., Tao, D.: On the learnability of quantum neural networks. Quantum Physics (2020). arXiv:2007.12369 [quant-ph]
Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Robert Salzmann, R., Wolf, R.: Efficient Learning for Deep Quantum Neural Networks. Quantum Physics (2019). arXiv:1902.10445 [quant-ph]
Altaisky, M.V., Kaputkina, N.E., Krylov, V.A.: Quantum neural networks: current status and prospects for development. Phys. Part. Nucl. 45(6), 1013–1032 (2014). https://doi.org/10.1134/s1063779614060033
Dlaska, C., Sieberer, L.M., Lechner, W.: Designing ground states of Hopfield networks for quantum state preparation. Phys. Rev. A 99, 032342 (2019)
Seki, Y., Nishimori, H.: Quantum annealing with antiferromagnetic transverse interactions for the Hopfield model. J. Phys. A: Math. Theor. 48, 335301 (2015)
Rotondo, P., Marcuzzi, M., Garrahan, J.P., Lesanovsky, I., Müller, M.: Open quantum generalisation of Hopfield neural networks. J. Phys. A: Math. Theor. 51, 115301 (2018)
Inoue, J.I.: Pattern-recalling processes in quantum Hopfield networks far from saturation. J. Phys.: Conf. Ser. 297, 012012 (2011)
Shcherbina, M., Tirozzi, B.: Quantum hopfield model. Mathematical Physics (2012). arXiv:1201.5024 [math-ph]
Tatsugami, F., Higaki, T., Nakamura, Y., Yu, Z., Zhou, J., Lu, Y., Awai, K.: Deep learning-based image restoration algorithm for coronary CT angiography. Eur. Radiol. (2019). https://doi.org/10.1007/s00330-019-06183-y
Singh, R., Parthasarathy, H., Singh, J.: Quantum image restoration based on Hudson–Parthasarathy Schrodinger equation. Quantum Inf. Process. 18, 351 (2019). https://doi.org/10.1007/s11128-019-2466-4
Ma, H., He, Z., Xu, P., Dong, Y., Fan, X.: A quantum Richardson–Lucy image restoration algorithm based on controlled rotation operation and Hamiltonian evolution. Quantum Inf. Process. (2020). https://doi.org/10.1007/s11128-020-02723-4
Inoue, J.I.: Application of the quantum spin glass theory to image restoration. Phys. Rev. E 63, 046114 (2001)
Mukherjee, S.S., Chowdhury, R., Bhattacharyya, S.: Image restoration using a multilayered quantum backpropagation neural network. In: 2011 International Conference on Computational Intelligence and Communication Networks (2011). https://doi.org/10.1109/cicn.2011.89
Liu, K., Zhang, Y., Wang, X.P., Lu, K.: Restoration from noise pollution for quantum images. In: Mechanics and Mechanical Engineering, pp. 1085–1094 (2016). https://doi.org/10.1142/9789813145603_0130
Caves, C.M., Fuchs, C.A., Schack, R.: Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65, 022305 (2002)
Johal, R.S.: Universal efficiency at optimal work with Bayesian statistics. Phys. Rev. E 82, 061113 (2010)
Jordan, A.N., Korotkov, A.N.: Qubit feedback and control with kicked quantum nondemolition measurements: a quantum Bayesian analysis. Phys. Rev. B 74, 085307 (2006)
Fuchs, C.A., Schack, R.: A quantum-Bayesian route to quantum-state space. Found. Phys. 41(3), 345–356 (2010). https://doi.org/10.1007/s10701-009-9404-8
Bužek, V., Derka, R., Adam, G., Knight, P.L.: Reconstruction of quantum states of spin systems: from quantum Bayesian inference to quantum tomography. Ann. Phys. 266(2), 454–496 (1998). https://doi.org/10.1006/aphy.1998.5802
Gelman, A., Shalizi, C.R.: Philosophy and the practice of Bayesian statistics. Br. J. Math. Stat. Psychol. 66(1), 8–38 (2012). https://doi.org/10.1111/j.2044-8317.2011.02037.x
Coecke, B., Spekkens, R.W.: Picturing classical and quantum Bayesian inference. Synthese 186(3), 651–696 (2011). https://doi.org/10.1007/s11229-011-9917-5
Lemm, J.C., Uhlig, J., Weiguny, A.: Bayesian approach to inverse quantum statistics. Phys. Rev. Lett. 84, 2068 (2000)
Suzuki, S., Inoue, J., Chakrabarti, B.K.: Quantum ising phases and transitions in transverse ising models. In: Lecture Notes in Physics (2013). https://doi.org/10.1007/978-3-642-33039-1
Monroe, C.: Quantum information processing with atoms and photons. Nature 416(6877), 238–246 (2002). https://doi.org/10.1038/416238a
Knill, E., Laflamme, R., Martinez, R., Tseng, C.-H.: An algorithmic benchmark for quantum information processing. Nature 404(6776), 368–370 (2000). https://doi.org/10.1038/35006012
Mastriani, M.: Quantum image processing? Quantum Inf. Process. (2016). https://doi.org/10.1007/s11128-016-1457-y
Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247–255 (2000). https://doi.org/10.1038/35005001
Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). https://doi.org/10.1038/nature10012
Das, A., Chakrabarti, B.K.: Colloquium: quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061 (2008)
Acknowledgements
First and foremost, we would like to thank our father for the inspiration to write this manuscript. This manuscript or article would never have been possible without the support and guidance of various people at the University of Energy and Natural Resources, Sunyani, Ghana.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the paper.
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Ethical approval
We the authors complied or adhered strictly to the code of ethics for writing manuscripts by ensuring that no plagiarism was made and that the literature was referenced appropriately to their respective authors. This work poses no ethical issues or challenges and is rightfully in line with the format for writing manuscripts or articles. This work follows high compliance with ethical standards.
Consent to participate
All authors consent to participate in this research or paper.
Consent for publishing
All authors consent to publish this research or paper.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
See Tables 2, 34, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16.
Rights and permissions
About this article
Cite this article
Nimbe, P., Weyori, B.A. & Adekoya, A.F. Models in quantum computing: a systematic review. Quantum Inf Process 20, 80 (2021). https://doi.org/10.1007/s11128-021-03021-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03021-3