Abstract
As a basic operation in quantum computers, quantum logic gates and particularly controlled NOT (CNOT) gates are important in quantum information processing. In this paper, we propose a one-step scheme to generate a CNOT gate via transitionless quantum driving. In this scheme, an effective Hamiltonian is obtained based on quantum Zeno dynamics to drive the system to evolve into the target state when the parameters are reasonably set. The results of explicit numerical simulations indicate that the proposed scheme is robust against instability related to variation in experimental parameters and decoherence. The scheme can also be extended to generate a Toffoli gate, which is useful for large-scale quantum computers. Moreover, the generation process involves only a single step, greatly simplifying its implementation.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Duan, L.M., Kinble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)
Neeley, M., Bialczak, R.C., Lenander, M., et al.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570 (2010)
Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87, 022320 (2013)
Huang, Y.F., Liu, B.H., Peng, L., et al.: Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state. Nat. Commun. 2, 546 (2011)
Facchi, P., Gorini, V., Marmo, G., et al.: Quantum Zeno dynamics. Phys. Lett. A 275, 12 (2000)
Facchi, P., Pascazio, S.: Quantum Zeno and inverse quantum Zeno effects. Prog. Opt. 42, 147 (2001)
Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)
Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998)
Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B 32, 4535 (1999)
Guery, D., et al.: Shortcuts to adiabaticity: concepts, methods, and applications. Rev. Mod. Phys. 91, 045001 (2019)
Lewis, H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)
Chen, X., Torrontegui, E., Muga, J.G.: Lewis–Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)
Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012)
Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89, 012326 (2014)
Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)
Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system. Phys. Rev. A 97, 023841 (2018)
Berry, M.V.: Transitionless quantum driving. J. Phys. A 42, 365303 (2009)
del Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013)
Liang, Y., Wu, Q.C., Su, S.L., Ji, X., Zhang, S.: Shortcuts to adiabatic passage for multiqubit controlled-phase gate. Phys. Rev. A 91, 032304 (2015)
Du, Y.X., Liang, Z.T., Li, Y.C., Yue, X.X., Lü, Q.X., Huang, W., Chen, X., Yan, H., Zhu, S.L.: Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms. Nat. Commun. 7, 12999 (2016)
Zhou, B.B., Baksic, A., Ribeiro, H., et al.: Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330 (2017)
Li, Y.C., Chen, X.: Shortcut to adiabatic population transfer in quantum three-level systems: effective two-level problems and feasible counterdiabatic driving. Phys. Rev. A 94, 063411 (2016)
Zhou, X., Liu, B.J., Shao, L.B., Zhang, X.D., Xue, Z.Y.: Quantum state conversion in opto-electro-mechanical systems via shortcut to adiabaticity. Laser Phys. Lett. 14, 095202 (2017)
Chen, Y.H., Xia, Y., Song, J., Chen, Q.Q.: Shortcuts to adiabatic passage for fast generation of Greenberger–Horne–Zeilinger states by transitionless quantum driving. Sci. Rep. 5, 15616 (2015)
Masuda, S., Nakamura, K.: Acceleration of adiabatic quantum dynamics in electromagnetic fields. Phys. Rev. A 84, 043434 (2011)
Masuda, S., Rice, S.A.: Fast-forward assisted STIRAP. J. Phys. Chem. A 119, 3479 (2015)
Ibáñez, S., Chen, X., Torrontegui, E., et al.: Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403 (2012)
Ibáñez, S., Chen, X., Muga, J.G.: Improving shortcuts to adiabaticity by iterative interaction pictures. Phys. Rev. A 87, 043402 (2013)
Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics. Phys. Rev. A 93, 052324 (2016)
Baksic, A., Ribeiro, H., Clerk, A.A.: Speeding up adiabatic quantum state transfer by using dressed states. Phys. Rev. Lett. 116, 230503 (2016)
Kang, Y.H., Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Fast preparation of W states with superconducting quantum interference devices by using dressed states. Phys. Rev. A 94, 052311 (2016)
Baksic, A., Belyansky, R., Ribeiro, H., Clerk, A.A.: Shortcuts to adiabaticity in the presence of a continuum: applications to itinerant quantum state transfer. Phys. Rev. A 96, 021801 (2017)
Zhang, F.Y., Yang, C.P.: Tunable coupling of spin ensembles. Opt. Lett. 43, 466 (2018)
Chen, X., Lizuain, I., Ruschhaupt, A., Odelin, D.G., Muga, J.G.: Shortcut to adiabatic passage in two-and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)
Chen, X., Ruschhaupt, A., Schmidt, S., et al.: Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)
Chen, Y.H., Wu, Q.C., Huang, B.H., Song, J., Xia, Y.: Arbitrary quantum state engineering in three-state systems via counterdiabatic driving. Sci. Rep. 6, 38484 (2016)
Chen, Y.H., Shi, Z.C., Song, J., Xia, Y., Zheng, S.B.: Optimal shortcut approach based on an easily obtained intermediate Hamiltonian. Phys. Rev. A 95, 062319 (2017)
Kang, Y.H., Chen, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Complete Bell-state analysis for superconducting-quantum-interference-device qubits with a transitionless tracking algorithm. Phys. Rev. A 96, 022304 (2017)
Zheng, R.H., Kang, Y.H., Shi, Z.C., Xia, Y.: Complete and nondestructive atomic Bell-State analysis assisted by inverse engineering. Ann. Phys. (Berlin) 530, 1800133 (2018)
Shan, W.J., Zhang, X.P., Wang, W.Q., Lin, M.: Fast and robust generation of singlet state via shortcuts to adiabatic passage. Quantum Inf. Process. 18, 22 (2018)
Yu, W.R., Ji, X.: Fast preparing W state via a chosen path shortcut in circuit QED. Quantum Inf. Process. 18, 247 (2018)
Gao, W.B., Xu, P., Yao, X.C., et al.: Experimental realization of a controlled-NOT Gate with Four-Photon Six-Qubit Cluster States. Phys. Rev. Lett. 104, 020501 (2010)
Zeng, Y., Xu, P., He, X.D., et al.: Entangling two individual atoms of different isotopes via Rydberg blockade. Phys. Rev. Lett. 119, 160502 (2017)
Tang, S.Q., Zhang, D.Y., Xie, L.J., Zhan, X.G., Gao, F.: Selective atom-cavity interaction scheme for quantum controlled-NOT gate using four-level atoms in cavity QED system. Commun. Theor. Phys. 51, 247 (2009)
Cesa, A., Martin, J.: Two-qubit entangling gates between distant atomic qubits in a lattice. Phys. Rev. A 95, 052330 (2017)
Rosenblum, S., Gao, Y.Y., Reinhold, P., et al.: A CNOT gate between multiphoton qubits encoded in two cavities. Nat. Commun. 9, 652 (2018)
Noh, T., Park, G., Lee, S.G., Song, W., Chong, Y.: Construction of controlled-NOT gate based on microwave-activated phase (MAP) gate in two transmon system. Sci. Rep. 8, 13598 (2018)
Sangouard, N., Lacour, X., Guérin, S., Jauslin, H.R.: CNOT gate by adiabatic passage with an optical cavity. Eur. Phys. J. D 37, 451 (2006)
Liang, Y., Song, C., Ji, X., Zhang, S.: Fast CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage. Opt. Express 23, 023798 (2015)
Wu, J.L., Ji, X., Zhang, S.: Dressed-state scheme for a fast CNOT gate. Quantum Inf. Process. 16, 294 (2017)
Liu, S., Ran, D., Shi, Z.C., Song, J., Xia, Y.: Implementation of controlled-NOT gate by Lyapunov control. Ann. Phys. (Berlin) 531, 1900086 (2019)
Zoubi, H., Orenstien, M., Ron, A.: Coupled microcavities with dissipation. Phys. Rev. A 62, 033801 (2000)
Ogden, C.D., Irish, E.K., Kim, M.S.: Dynamics in a coupled-cavity array. Phys. Rev. A 78, 063805 (2008)
Li, Q., Wang, T., Su, Y., Yan, M., Qiu, M.: Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18, 8367 (2010)
Knap, M., Arrigoni, E., Linden, W.V.D.: Emission characteristics of laser-driven dissipative coupled-cavity systems. Phys. Rev. A 83, 023821 (2011)
Wang, Z., Xia, Y., Chen, Y.H., Song, J.: Fast controlled preparation of two-atom maximally entangled state and N-atom W state in the direct coupled cavity systems via shortcuts to adiabatic passage. Eur. Phys. J. D 70, 162 (2016)
Almeida, G.M.A., Ciccarello, F., Apollaro, T.J.G., Souza, A.M.C.: Quantum-state transfer in staggered coupled-cavity arrays. Phys. Rev. A 93, 032310 (2016)
Lu, M., Zhang, C.L., Zhang, B., Lin, W.S.: Shortcuts to adiabatic passage for the generation of maximally entangle states in a distributed atom-cavity system. Laser Phys. Lett. 16, 045206 (2019)
Hartmann, M.J., Brandão, F.G.S.L., Plenio, M.B.: Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527 (2008)
Kim, K.H., Hwang, M.S., Kim, H.R., Choi, J.H., No, Y.S., Park, H.G.: Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains. Nat. Commun. 7, 13893 (2016)
Schiró, M., Joshi, C., Bordyuh, M., Fazio, R., Keeling, J., Türeci, H.E.: Exotic attractors of the nonequilibrium Rabi–Hubbard model. Phys. Rev. Lett. 116, 143603 (2016)
Fitzpatrick, M., Sundaresan, N.M., Li, A.C.Y., Koch, J., Houck, A.A.: Observation of a dissipative phase transition in a one-dimensional circuit QED lattice. Phys. Rev. X 7, 011016 (2017)
Chen, M.F., Chen, Y.F., Ma, S.S.: One-step implementation of a Toffoli gate of separated superconducting qubits via quantum Zeno dynamics. Quantum Inf. Process 15, 1469 (2015)
Li, H.O., Cao, G., Yu, G.D., et al.: Controlled quantum operations of a semiconductor three-qubit system. Phys. Rev. Appl. 9, 024015 (2018)
Beterov, I.I., Ashkarin, I.N., et al.: Fast three-qubit Toffoli quantum gate based on three-body Förster resonances in Rydberg atoms. Phys. Rev. A 98, 042704 (2017)
Cao, Y., Wang, G.C., Liu, H.D., Sun, C.F.: Implementation of a Tofoli gate using an array of coupled cavities in a single step. Sci. Rep. 8, 5813 (2018)
Li, M., Zhang, M.: Robust universal photonic quantum gates operable with imperfect processes involved in diamond nitrogen-vacancy centers inside low-Q single-sided cavities. Opt. Express 26, 33129 (2018)
Boozer, A.D., Boca, A., Miller, R., Northup, T.E., Kimble, H.J.: Cooling to the ground state of a xial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006)
Mundt, A.B., Kreuter, A., Becher, C., Leibfried, D., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Cooling a single atomic quantum bit to a high finesse optical cavity. Phys. Rev. Lett. 89, 103001 (2002)
Spillane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)
Buck, J.R., Kimble, H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67, 033806 (2003)
Hartmann, M.J., Brandão, F.G.S.L., Plenio, M.B.: Strongly correlated polaritons in a two-dimensional array of cavities. Nat. Phys. 2, 849 (2006)
Acknowledgements
This work is supported by the Educational Committee of Fujian Province of China under Grants Nos. JAT190978 and JT180729.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, WW., Zhang, CL. & Zhang, L. Fast and robust implementation of quantum gates by transitionless quantum driving. Quantum Inf Process 20, 118 (2021). https://doi.org/10.1007/s11128-021-03038-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03038-8