Skip to main content

Advertisement

Log in

A hybrid scheme for prime factorization and its experimental implementation using IBM quantum processor

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We report a quantum–classical hybrid scheme for factorization of bi-prime numbers (which are odd and square-free) using IBM’s quantum processors. The hybrid scheme proposed here involves both classical optimization techniques and adiabatic quantum optimization techniques, and is build by extending a previous scheme of hybrid factorization [Pal et al., Pramana 92, 26 (2019) and Xu et al., Phys. Rev. Lett. 108, 130501 (2012)]. The quantum part of the scheme is very general in the sense that it can be implemented using any quantum computing architecture. Here, as an example, we experimentally implement our scheme for prime factorization using IBM’s QX4 quantum processor and have factorized 35.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120 (1978)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review 41, 303 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  4. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  5. Shor, P. W.: in Proceedings 35th annual symposium on foundations of computer science (Ieee, 1994) pp. 124–134

  6. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)

    Article  ADS  Google Scholar 

  7. Lu, C.-Y., Browne, D.E., Yang, T., Pan, J.-W.: Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99, 250504 (2007)

    Article  ADS  Google Scholar 

  8. Lanyon, B.P., Weinhold, T.J., Langford, N.K., Barbieri, M., James, D.F., Gilchrist, A., White, A.G.: Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007)

    Article  ADS  Google Scholar 

  9. Politi, A., Matthews, J. C., O’brien, J. L.: Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009)

  10. Matthews, J. C., Politi, A., O’Brien, J. L.: A compiled version of Shor’s quantum factoring algorithm on a waveguide chip, in Frontiers in Optics (Optical Society of America, 2009) p. PDPA6

  11. Lucero, E., Barends, R., Chen, Y., Kelly, J., Mariantoni, M., Megrant, A., O’Malley, P., Sank, D., Vainsencher, A., Wenner, J., et al.: Computing prime factors with a Josephson phase qubit quantum processor. Nat. Phys. 8, 719 (2012)

    Article  Google Scholar 

  12. Peng, X., Liao, Z., Xu, N., Qin, G., Zhou, X., Suter, D., Du, J.: Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101, 220405 (2008)

    Article  ADS  Google Scholar 

  13. Pal, S., Moitra, S., Anjusha, V., Kumar, A., Mahesh, T.: Hybrid scheme for factorisation: factoring 551 using a 3-qubit NMR quantum adiabatic processor. Pramana 92, 26 (2019)

    Article  ADS  Google Scholar 

  14. Li, Z., Dattani, N. S., Chen, X., Liu, X., Wang, H., Tanburn, R., Chen, H., Peng, X., Du, J.: High-fidelity adiabatic quantum computation using the intrinsic Hamiltonian of a spin system: Application to the experimental factorization of 291311, arXiv preprint arXiv:1706.08061 (2017)

  15. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  16. Xu, N., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130501 (2012)

    Article  ADS  Google Scholar 

  17. Dattani, N. S., Bryans, N.: Quantum factorization of 56153 with only 4 qubits, arXiv preprint arXiv:1411.6758 (2014)

  18. Xu, K., Xie, T., Li, Z., Xu, X., Wang, M., Ye, X., Kong, F., Geng, J., Duan, C., Shi, F., et al.: Experimental adiabatic quantum factorization under ambient conditions based on a solid-state single spin system. Phys. Rev. Lett. 118, 130504 (2017)

    Article  ADS  Google Scholar 

  19. Dridi, R., Alghassi, H.: Prime factorization using quantum annealing and computational algebraic geometry. Sci. rep. 7, 43048 (2017)

    Article  ADS  Google Scholar 

  20. Anschuetz, E., Olson, J., Aspuru-Guzik, A., Cao, Y.: Variational quantum factoring, in International workshop on quantum technology and optimization problems (Springer, 2019) pp. 74-85

  21. “IBM quantum computing platform,” http://research.ibm.com/ibm-q/qx/ (2016)

  22. Devitt, S.J.: Performing quantum computing experiments in the cloud. Phys. Rev. A 94, 032329 (2016)

    Article  ADS  Google Scholar 

  23. Steffen, M., DiVincenzo, D.P., Chow, J.M., Theis, T.N., Ketchen, M.B.: Quantum computing: an ibm perspective. IBM J. Res. Develop. 55, 13 (2011)

    Article  Google Scholar 

  24. Wei, S.-J., Xin, T., Long, G.-L.: Efficient universal quantum channel simulation in IBM’s cloud quantum computer. Sci. China Phys Mech. Astronomy 61, 70311 (2018)

    Article  Google Scholar 

  25. Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quant. Inform. Process. 16, 312 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. Fedortchenko, S.: A quantum teleportation experiment for undergraduate students, arXiv preprint arXiv:1607.02398 (2016)

  27. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quant. Inform. Process. 16, 292 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)

    Article  ADS  Google Scholar 

  29. Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)

    Article  ADS  Google Scholar 

  30. Linke, N.M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Experimental comparison of two quantum computing architectures. Proc. Nat. Academy Sci. 114, 3305 (2017)

    Article  Google Scholar 

  31. Yalçınkaya, I., Gedik, Z.: Optimization and experimental realization of the quantum permutation algorithm. Phys. Rev. A 96, 062339 (2017)

    Article  ADS  Google Scholar 

  32. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242 (2017)

    Article  ADS  Google Scholar 

  33. Wootton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quant. Sci. Technol. 2, 015006 (2017)

    Article  ADS  Google Scholar 

  34. Hebenstreit, M., Alsina, D., Latorre, J., Kraus, B.: Compressed quantum computation using a remote five-qubit quantum computer. Phys. Rev. A 95, 052339 (2017)

    Article  ADS  Google Scholar 

  35. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution, arXiv preprint arXiv:quant-ph/0001106 (2000)

  36. Mesiah, A.: Quantum Mechanics: Vol. I, Ii (North-Holla’nd (1961)

  37. Malkoc, O.: Quantum computation with superconducting qubits. Quantum 1, 23 (2013)

    Google Scholar 

  38. Sisodia, M., Shukla, A., Pathak, A.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Rev. A 381, 3860 (2017)

    Google Scholar 

  39. Shukla, A., Sisodia, M., Pathak, A.: Complete characterization of the directly implementable quantum gates used in the IBM quantum processors. Phys. Rev. A 384, 126387 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Defense Research & Development Organization (DRDO), India, for the support provided through the project number ERIP/ER/1403163/M/01/1603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, A., Shukla, A. & Pathak, A. A hybrid scheme for prime factorization and its experimental implementation using IBM quantum processor. Quantum Inf Process 20, 112 (2021). https://doi.org/10.1007/s11128-021-03053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03053-9

Keywords

Navigation