Abstract
There has been an extensive development in the use of multi-partite entanglement as a resource for various quantum information processing tasks. In this paper, we focus on preparing arbitrary spin eigenstates whose subset contains important entangled resources like Dicke states. Leveraging on the symmetry of these states, we consider uniform pairwise exchange coupling between every pair of qubits. Starting from a product state of a given spin eigenstate with a single-qubit state, another spin eigenstate can be prepared using simple time evolutions. This expansion paves a deterministic approach to prepare arbitrary Dicke states in linear steps. We discuss an improvement in this cost, building up on a previous work on deterministic preparation of W states in logarithmic circuit depth (Sharma and Tulapurkar in Phys Rev A 101:062330, 2020). The modified algorithm requires several iterations of pumping spin angular momentum into the system and is akin to the amplitude amplification in Grover’s search. To demonstrate the proposed scheme, we choose a system of non-interacting static spin qubits connected to a ferromagnetic reservoir. The flying qubits emerging from the reservoir locally interact with static qubits successively, mediating an in-direct exchange interaction between all the pairs.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Sharma, A., Tulapurkar, A.A.: Generation of \(n\)-qubit \(W\) states using spin torque. Phys. Rev. A 101, 062330 (2020)
Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 1000 (2006)
Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)
Meiser, D., Ye, J., Carlson, D.R., Holland, M.J.: Prospects for a Millihertz–Linewidth laser. Phys. Rev. Lett. (2009). https://doi.org/10.1103/physrevlett.102.163601
Breeze, J.D., Salvadori, E., Sathian, J., Alford, N.M., Kay, C.W.M.: Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states. Quantum Inf. (2017). https://doi.org/10.1038/s41534-017-0041-3
Baumann, K., Guerlin, C., Brennecke, F., Esslinger, T.: Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301 (2010)
Yu, S., Titze, M., Zhu, Y., Liu, X., Li, H.: Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor. Opt. Lett. 44, 2795 (2019)
Neven, A., Martin, J., Bastin, T.: Entanglement robustness against particle loss in multiqubit systems. Phys. Rev. A (2018). https://doi.org/10.1103/physreva.98.062335
Lidar, D.A., Whaley, K.B.: Irreversible Quantum Dynamics, pp. 83–120. Springer, Berlin (2003)
Kiesel, N., Schmid, C., T’oth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled Dicke state with high fidelity. Phys. Rev. Lett. (2007). https://doi.org/10.1103/physrevlett.98.063604
Sen, A., Sen, U., Zukowski, M.: Unified criterion for security of secret sharing in terms of violation of Bell inequalities. Phys. Rev. A (2003). https://doi.org/10.1103/physreva.68.032309
Childs, A.M., Farhi, E., Goldstone, J., Gutmann, S.: Finding cliques by quantum adiabatic evolution. Quantum Inf. Comput. 2, 181–191 (2002)
Ivanov, S.S., Ivanov, P.A., Linington, I.E., Vitanov, N.V.: Scalable quantum search using trapped ions. Phys. Rev. A (2010). https://doi.org/10.1103/physreva.81.042328
Prevedel, R., Cronenberg, G., Tame, M.S., Paternostro, M., Walther, P., Kim, M.S., Zeilinger, A.: Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. (2009). https://doi.org/10.1103/physrevlett.103.020503
Chiuri, A., Greganti, C., Paternostro, M., Vallone, G., Mataloni, P.: Experimental quantum networking protocols via four-qubit hyperentangled Dicke states. Phys. Rev. Lett. (2012). https://doi.org/10.1103/physrevlett.109.173604
T’oth, G.: Detection of multipartite entanglement in the vicinity of symmetric Dicke states. J. Opt. Soc. Am. B 24, 275 (2007)
T’oth, G.: Multipartite entanglement and high-precision metrology. Phys. Rev. A (2012). https://doi.org/10.1103/physreva.85.022322
Ivanov, S.S., Vitanov, N.V., Korolkova, N.V.: Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses. New J. Phys. 15, 023039 (2013)
Hume, D.B., Chou, C.W., Rosenband, T., Wineland, D.J.: Preparation of Dicke states in an ion chain. Phys. Rev. A (2009). https://doi.org/10.1103/physreva.80.052302
Ji, Y.Q., Liu, Y.L., Zhou, S.J., Xiu, X.M., Dong, L., Dong, H.K., Gao, Y.J., Yi, X.X.: Fast conversion of Dicke states \(|{D}_{n}^{(2)}{\rangle }\) to \(|{D}_{n+1}^{(2)}{\rangle }\) by transitionless quantum driving. Phys. Rev. A 99, 023808 (2019)
Xiao, Y.-F., Zou, X.-B., Guo, G.-C.: Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics. Phys. Rev. A (2007). https://doi.org/10.1103/physreva.75.012310
Wu, C., Guo, C., Wang, Y., Wang, G., Feng, X.-L., Chen, J.-L.: Generation of Dicke states in the ultrastrong-coupling regime of circuit QED systems. Phys. Rev. A (2017). https://doi.org/10.1103/physreva.95.013845
Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570 (2010)
Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., T’oth, G., Weinfurter, H.: Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. (2009). https://doi.org/10.1103/physrevlett.103.020504
Wang, M.-Y., Yan, F.-L., Gao, T.: Deterministic distribution of four-photon Dicke state over an arbitrary collective-noise channel with cross-Kerr nonlinearity. Sci. Rep. (2016). https://doi.org/10.1038/srep29853
Bugu, S., Ozaydin, F., Ferrus, T., Kodera, T.: Preparing multipartite entangled spin qubits via pauli spin blockade. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-60299-6
Luo, Y., Yu, H., Yao, W.: Deterministic preparation of Dicke states of donor nuclear spins in silicon by cooperative pumping. Phys. Rev. B (2012). https://doi.org/10.1103/physrevb.85.155304
Bärtschi, A., Eidenbenz, S.: Fundamentals of Computation Theory, pp. 126–139. Springer, Berlin (2019)
Filipp, S., van Loo, A.F., Baur, M., Steffen, L., Wallraff, A.: Preparation of subradiant states using local qubit control in circuit QED. Phys. Rev. A 84, 061805 (2011)
DeVoe, R.G., Brewer, R.G.: Observation of superradiant and subradiant spontaneous emission of two trapped ions. Phys. Rev. Lett. 76, 2049 (1996)
Pavolini, D., Crubellier, A., Pillet, P., Cabaret, L., Liberman, S.: Experimental evidence for subradiance. Phys. Rev. Lett. 54, 1917 (1985)
Begzjav, T.K., Wang, L., Nessler, R.: On permutation symmetry of subradiant states and its application. Phys. Scr. 94, 094001 (2019)
Sutton, B., Datta, S.: Manipulating quantum information with spin torque. Sci. Rep. (2015). https://doi.org/10.1038/srep17912
Kulkarni, A., Kaushik, B.K.: Spin-torque-based quantum Fourier transform. IEEE Trans. Magn. 55, 1 (2019)
Compagno, G., Messina, A., Nakazato, H., Napoli, A., Unoki, M., Yuasa, K.: Distillation of entanglement between distant systems by repeated measurements on an entanglement mediator. Phys. Rev. A (2004). https://doi.org/10.1103/physreva.70.052316
Costa, A.T., Bose, S., Omar, Y.: Entanglement of two impurities through electron scattering. Phys. Rev. Lett. (2006). https://doi.org/10.1103/physrevlett.96.230501
Yuasa, K., Nakazato, H.: Resonant scattering can enhance the degree of entanglement. J. Phys. A Math. Theor. 40, 297 (2006)
Ciccarello, F., Paternostro, M., Kim, M.S., Palma, G.M.: Extraction of singlet states from noninteracting high-dimensional spins. Phys. Rev. Lett. (2008). https://doi.org/10.1103/physrevlett.100.150501
Pasquale, A.D., Yuasa, K., Nakazato, H.: State tomography of a qubit through scattering of a probe qubit. Phys. Rev. A (2009). https://doi.org/10.1103/physreva.80.052111
Cordourier-Maruri, G., Ciccarello, F., Omar, Y., Zarcone, M., de Coss, R., Bose, S.: Implementing quantum gates through scattering between a static and a flying qubit. Phys. Rev. A (2010). https://doi.org/10.1103/physreva.82.052313
Ciccarello, F., Browne, D.E., Kwek, L.C., Schomerus, H., Zarcone, M., Bose, S.: Quasideterministic realization of a universal quantum gate in a single scattering process. Phys. Rev. A (2012). https://doi.org/10.1103/physreva.85.050305
Pasquale, A.D., Facchi, P., Giovannetti, V., Yuasa, K.: Entanglement-assisted tomography of a quantum target. J. Phys. A Math. Theor. 45, 105309 (2012)
Shukla, A.S., Chouhan, A., Pandey, R., Raghupathi, M., Yamamoto, T., Kubota, H., Fukushima, A., Yuasa, S., Nozaki, T., Tulapurkar, A.A.: Generation of charge current from magnetization oscillation via the inverse of voltage-controlled magnetic anisotropy effect. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.abc2618
Slonczewski, J.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996)
Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996)
Bhuktare, S., Shukla, A.S., Singh, H., Bose, A., Tulapurkar, A.A.: Direct observation of the reciprocity between spin current and phonon interconversion. Appl. Phys. Lett. 114, 052402 (2019)
Bose, A., Dutta, S., Bhuktare, S., Singh, H., Tulapurkar, A.A.: Sensitive measurement of spin-orbit torque driven ferromagnetic resonance detected by planar Hall geometry. Appl. Phys. Lett. 111, 162405 (2017)
Bose, A., Lam, D., Bhuktare, S., Dutta, S., Singh, H., Jibiki, Y., Goto, M., Miwa, S., Tulapurkar, A.: Observation of anomalous spin torque generated by a ferromagnet. Phys. Rev. Appl. (2018a). https://doi.org/10.1103/physrevapplied.9.064026
Bose, A., Shukla, A.K., Konishi, K., Jain, S., Asam, N., Bhuktare, S., Singh, H., Lam, D.D., Fujii, Y., Miwa, S., Suzuki, Y., Tulapurkar, A.A.: Observation of thermally driven field-like spin torque in magnetic tunnel junctions. Appl. Phys. Lett. 109, 032406 (2016)
Bose, A., Tulapurkar, A.A.: Recent advances in the spin Nernst effect. J. Magn. Magn. Mater. 491, 165526 (2019)
Bose, A., Bhuktare, S., Singh, H., Dutta, S., Achanta, V.G., Tulapurkar, A.A.: Direct detection of spin Nernst effect in platinum. Appl. Phys. Lett. 112, 162401 (2018b)
Pauncz, R.: Spin Eigenfunctions. Springer, New York (1979)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)
Huang, B., Monsma, D.J., Appelbaum, I.: Coherent spin transport through a 350 micron thick silicon wafer. Phys. Rev. Lett. 99, 177209 (2007)
Acknowledgements
We acknowledge the support of Department of Science and Technology (DST), Government of India through Project No. SR/NM/NS-1112/2016 and Science and Engineering Research Board (SERB) through Project No. EMR/2016/007131.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 3434 KB)
Rights and permissions
About this article
Cite this article
Sharma, A., Tulapurkar, A.A. Preparation of spin eigenstates including the Dicke states with generalized all-coupled interaction in a spintronic quantum computing architecture. Quantum Inf Process 20, 172 (2021). https://doi.org/10.1007/s11128-021-03063-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03063-7